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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path
(SSP) problem.

• Episodic MDP with a goal state.

• The objective is to reach the goal state with minimum cost.
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Motivation
Policy Optimization (PO) is among the most popular methods in reinforcement learning

• Widely applied in practice: REINFORCE [W1992], TRPO [SLMJA2017], PPO
[SWDRK2017], etc.

• Easy to implement, computationally efficient.

• Easily handle different types of environments: stochastic or adversarial costs
[SERM2020], function approximation [CYJW2020], non-stationary environments
[FYWX2020], etc.
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Our Contributions

We propose the first set of PO algorithms for SSP.

1. Stacked Discounted Approximation (SDA): approximate SSP by a simpler MDP with
some best-of-both-worlds property.

2. Near optimal regret bounds in various settings including both stochastic costs and
adversarial costs.
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Problem Formulation

for episode k = 1, . . . ,K do
learner starts in state sk1 = s0 ∈ S, i ← 1

while s ik ̸= g do
learner chooses action aki ∈ A, suffer cost cki (may not observe immediately), and
observes state ski+1 ∼ P(·|ski , aki )
i ← i + 1

Regret: RK =
K∑

k=1

Ik∑
i=1

cki −
K∑

k=1

V π⋆

k (s0)

where V π
k (s) is the expected cost of policy π starting from s in episode k ,

π⋆ = argminπ∈Π
∑K

k=1 V
π
k (s0), and Π is the set of proper policies which reaches g with

probability 1.
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Feedback Type

• Stochastic Environments: there exists a fixed unknown mean cost function
c ∈ [0, 1]S×A.

• Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d
cost sample with mean c(s, a).

• Stochastic Adversary, Full information (SAF): before learning starts, adversary samples
K i.i.d cost functions {ck}Kk=1 with mean c ; learner suffers ck(s, a) when it visits (s, a),
and the learner observes the entire cost function ck at the end of episode k.

• Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {ck(ski , aki )}

Ik
i=1 at the end of episode k.

• Adversarial Environments: in episode k , the environment picks a cost function ck
possibly depending on the interaction history.
• Adversarial costs, Full information (AF)
• Adversarial costs, Bandit feedback (AB)

10 / 37



Feedback Type

• Stochastic Environments: there exists a fixed unknown mean cost function
c ∈ [0, 1]S×A.
• Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d

cost sample with mean c(s, a).

• Stochastic Adversary, Full information (SAF): before learning starts, adversary samples
K i.i.d cost functions {ck}Kk=1 with mean c ; learner suffers ck(s, a) when it visits (s, a),
and the learner observes the entire cost function ck at the end of episode k.

• Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {ck(ski , aki )}

Ik
i=1 at the end of episode k.

• Adversarial Environments: in episode k , the environment picks a cost function ck
possibly depending on the interaction history.
• Adversarial costs, Full information (AF)
• Adversarial costs, Bandit feedback (AB)

11 / 37



Feedback Type

• Stochastic Environments: there exists a fixed unknown mean cost function
c ∈ [0, 1]S×A.
• Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d

cost sample with mean c(s, a).
• Stochastic Adversary, Full information (SAF): before learning starts, adversary samples

K i.i.d cost functions {ck}Kk=1 with mean c ; learner suffers ck(s, a) when it visits (s, a),
and the learner observes the entire cost function ck at the end of episode k.

• Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {ck(ski , aki )}

Ik
i=1 at the end of episode k.

• Adversarial Environments: in episode k , the environment picks a cost function ck
possibly depending on the interaction history.
• Adversarial costs, Full information (AF)
• Adversarial costs, Bandit feedback (AB)

12 / 37



Feedback Type

• Stochastic Environments: there exists a fixed unknown mean cost function
c ∈ [0, 1]S×A.
• Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d

cost sample with mean c(s, a).
• Stochastic Adversary, Full information (SAF): before learning starts, adversary samples

K i.i.d cost functions {ck}Kk=1 with mean c ; learner suffers ck(s, a) when it visits (s, a),
and the learner observes the entire cost function ck at the end of episode k.

• Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {ck(ski , aki )}

Ik
i=1 at the end of episode k.

• Adversarial Environments: in episode k , the environment picks a cost function ck
possibly depending on the interaction history.
• Adversarial costs, Full information (AF)
• Adversarial costs, Bandit feedback (AB)

13 / 37



Feedback Type

• Stochastic Environments: there exists a fixed unknown mean cost function
c ∈ [0, 1]S×A.
• Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d

cost sample with mean c(s, a).
• Stochastic Adversary, Full information (SAF): before learning starts, adversary samples

K i.i.d cost functions {ck}Kk=1 with mean c ; learner suffers ck(s, a) when it visits (s, a),
and the learner observes the entire cost function ck at the end of episode k.

• Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {ck(ski , aki )}

Ik
i=1 at the end of episode k.

• Adversarial Environments: in episode k , the environment picks a cost function ck
possibly depending on the interaction history.
• Adversarial costs, Full information (AF)
• Adversarial costs, Bandit feedback (AB)

14 / 37



Our Results

We obtain near optimal regret bounds in various settings.

Regret Time Space Feedback

Cohen et al., 2021 B⋆

√
SAK S3A2Tmax S2ATmax

SC
Our work B⋆S

√
AK S2ATmaxK S2A

Chen and Luo, 2021
√
DT⋆K + DS

√
AK poly(S ,A,Tmax) · K S2ATmax

SAF
Our work

√
DT⋆K + DS

√
AK S2ATmaxK S2A

Chen and Luo, 2021
√
SADT⋆K + DS

√
AK poly(S ,A,Tmax) · K S2ATmax

SAB
Our work

√
SADT⋆K + DS

√
AK S2ATmaxK S2A

Chen and Luo, 2021
√

S2ADT⋆K poly(S ,A,Tmax) · K S2ATmax
AF

Our work
√

(S2A+ T⋆)DT⋆K S2ATmaxK S2A

Chen and Luo, 2021
√

S3A2DT⋆K poly(S ,A,Tmax) · K S2ATmax
AB

Our work
√

S2AT 5
maxK poly(S ,A,Tmax) · K S2A

B⋆ = maxs V
π⋆
(s), T⋆ = Tπ⋆

(sinit), Tmax = maxs T
π⋆
(s), and D = maxs minπ T

π(s),
where Tπ(s) is the hitting time of policy π starting from state s.
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Stacked Discounted Approximation

Issue: PO requires policy evaluation, which does not make sense for policies that may
not reach the goal.

Solution: Approximate SSP by a simpler MDP model, where all policies are proper.

Optimal regret? Stationary policy?

Finite-Horizon Yes No (× horizon)

Discounted No Yes

Finite-Horizon + Discounted = ?
Question: Can we obtain a best-of-both-world approximation?
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Stacked Discounted Approximation

Finite-Horizon + Discounted = Stacked Discounted

M→ M̃: stack H γ-discounted MDPs

• State space: S × [H + 1].

• In each step the learner transits to the next layer w.p. 1− γ:
P((s ′, h)|(s, h), a) = γP(s ′|s, a), P((s ′, h + 1)|(s, h), a) = (1− γ)P(s ′|s, a), and
P(g |(s, h), a) = P(g |s, a).

• When h = H + 1, the learner suffers a terminal cost of Õ(D) (high probability upper
bound on the cost of executing fast policy).

π̃ → π = σ(π̃): maintain a counter h, increase h by 1 with probability 1− γ at every time
step; follow π̃(·|s, h) for h ≤ H, and switch to fast policy when h = H + 1.
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Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of O(Tmax ln
1
ϵ ) to

achieve ϵ approximation error.

Observation 2: a discounted MDP with discount factor γ ≈ a finite-horizon MDP with
horizon 1

1−γ (compressed representation).

Implication: Setting γ = 1− 1
Tmax

, we only need H = O(lnK ) layers to achieve 1/K
approximation error. This gives a nearly stationary policy that only changes O(lnK )
times.

Tmax: expected hitting time of π⋆ over all
states
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Template of PO Algorithm for SSP

Initialize: P1 as the set of all possible transitions in M̃, η > 0 some learning rate.
for k = 1, . . . ,K do

Compute πk(a|s, h) ∝ exp
(
−η
∑k−1

j=1 (Q̃j(s, a, h)− Bj(s, a, h))
)
, where Q̃j is some op-

timistic action-value estimator and Bj is some exploration bonus.

Execute σ(πk) for one episode.
Compute Bernstein-style transition confidence set Pk+1.

Optimistic Value Functions: denote by Qπ,P,c (or V π,P,c) the optimistic action-value
function (or value function) w.r.t policy π, transition confidence set P, and cost function
c .
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PO Algorithms for SSP: Stochastic Environments

Algorithm Design: simply set Bk(s, a, h) = 0, and

• Action-value estimator Q̃k = Qπk ,Pk ,c̃k for some cost function c̃k :

c̃k = (1 + λQ̂k(s, a, h))ĉk(s, a, h) + ek(s, a, h),

where Q̂k = Qπk ,Pk ,ĉk , ĉk is some standard cost estimator, and ek is some correction
term specified below.

• Optimistic cost estimator ĉk is some standard Bernstein-style optimistic cost
estimator, such that ĉk(s, a) ≤ c(s, a) with high probability.

• Correction term ek(s, a, h) is 0 for stochastic costs (SC);
(8ι
√

ĉk(s, a, h)/k + β′Q̂k(s, a, h))I{h ≤ H} for stochastic adversary with full

information; and βQ̂k(s, a, h)I{h ≤ H} for stochastic adversary with bandit feedback.

28 / 37



PO Algorithms for SSP: Stochastic Environments

Algorithm Design: simply set Bk(s, a, h) = 0, and

• Action-value estimator Q̃k = Qπk ,Pk ,c̃k for some cost function c̃k :

c̃k = (1 + λQ̂k(s, a, h))ĉk(s, a, h) + ek(s, a, h),
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PO Algorithms for SSP: Stochastic Environments

Theorem

With the instantiation above, we have RK = Õ(B⋆S
√
AK ) with stochastic costs;

RK = Õ(
√
DT⋆K + DS

√
AK ) with stochastic adversary, full information; and

RK = Õ(
√
DT⋆SAK + DS

√
AK ) with stochastic adversary, bandit feedback.

Analysis Highlights

• A new correction term λĉk(s, a, h)Q̂k(s, a, h) to deal with transition estimation error,
which requires a regret bound starting from any state-action pair that PO enjoys.

• Carefully designed correction term ek to deal with cost estimation error under
different feedback types.

• An improved PO analysis that reduces the cost of policy update from Õ(
√
K ) to

Õ(K 1/4).
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• A new correction term λĉk(s, a, h)Q̂k(s, a, h) to deal with transition estimation error,
which requires a regret bound starting from any state-action pair that PO enjoys.

• Carefully designed correction term ek to deal with cost estimation error under
different feedback types.

• An improved PO analysis that reduces the cost of policy update from Õ(
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PO Algorithms for SSP: Adversarial Environments

Algorithm Design (Full Information)

• Action-value estimator Q̃k = Qπk ,Pk ,c̃k , where c̃k = (1 + λQ̂k(s, a, h))ck(s, a, h)
and Q̂k = Qπk ,Pk ,ck .

• Dilated bonus Bk = Bπk ,Pk ,bk , where bk(s, a, h) = 2η
∑

a πk(a|s, h)Ãk(s, a, h)
2,

Ãk(s, a, h) = Q̃k(s, a, h)− Ṽk(s, h), Ṽk = V πk ,Pk ,c̃k , and Bπ,P,b is defined as:
Bπ,P,b(s, a,H + 1) = b(s, a,H + 1) and

Bπ,P,b(s, a, h) = b(s, a, h) +

(
1 +

1

H ′

)
max
P̂∈P

P̂s,a,h

(∑
a′

π(a′|·, ·)Bπ,P,b(·, a′, ·)

)
,

where H ′ = 8(H+1) ln(2K)
1−γ is the dilated coefficient.
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PO Algorithms for SSP: Adversarial Environments

Theorem

With the instantiation above, we have RK = Õ(T⋆

√
DK +

√
S2ADT⋆K ).

Analysis Highlights

• A shifting argument to obtain a refined stability term w.r.t the advantage function.

• Dilated bonus + correction term λQ̂k(s, a, h)ck(s, a, h) to transform the stability
term into a term of order Õ(ηDT⋆K ) (Õ(ηT⋆T

2
maxK ) by vanilla analysis).
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PO Algorithms for SSP: Adversarial Environments

Algorithm Design and Analysis (Bandit Feedback): mainly follows (Luo et al., 2021)
with components adapted to the stacked discounted MDP.

Theorem

With the instantiation above, we have RK = Õ(
√
S2AT 5

maxK ).

36 / 37



Conclusion
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