Policy Optimization for Stochastic Shortest Path

Liyu Chen, Haipeng Luo, Aviv Rosenberg

University of Southern California

August 31, 2022

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path (SSP) problem.

- Episodic MDP with a goal state.
- The objective is to reach the goal state with minimum cost.

Policy Optimization (PO) is among the most popular methods in reinforcement learning

- Widely applied in practice: REINFORCE [W1992], TRPO [SLMJA2017], PPO [SWDRK2017], etc.
- Easy to implement, computationally efficient.

Policy Optimization (PO) is among the most popular methods in reinforcement learning

- Widely applied in practice: REINFORCE [W1992], TRPO [SLMJA2017], PPO [SWDRK2017], etc.
- Easy to implement, computationally efficient.
- Easily handle different types of environments: stochastic or adversarial costs [SERM2020], function approximation [CYJW2020], non-stationary environments [FYWX2020], etc.

We propose the first set of PO algorithms for SSP.

- 1. Stacked Discounted Approximation (SDA): approximate SSP by a simpler MDP with some best-of-both-worlds property.
- 2. Near optimal regret bounds in various settings including both stochastic costs and adversarial costs.

Problem Formulation

for episode k = 1, ..., K do learner starts in state $s_1^k = s_0 \in S, i \leftarrow 1$

Problem Formulation

for episode
$$k = 1, ..., K$$
 do
learner starts in state $s_1^k = s_0 \in S, i \leftarrow 1$
while $s_k^i \neq g$ do
learner chooses action $a_i^k \in A$, suffer cost c_i^k (may not observe immediately), and
observes state $s_{i+1}^k \sim P(\cdot|s_i^k, a_i^k)$
 $i \leftarrow i + 1$

Problem Formulation

for episode
$$k = 1, ..., K$$
 do
learner starts in state $s_1^k = s_0 \in S, i \leftarrow 1$
while $s_k^i \neq g$ do
learner chooses action $a_i^k \in A$, suffer cost c_i^k (may not observe immediately), and
observes state $s_{i+1}^k \sim P(\cdot|s_i^k, a_i^k)$
 $i \leftarrow i + 1$

Regret:
$$R_K = \sum_{k=1}^{K} \sum_{i=1}^{I_k} c_i^k - \sum_{k=1}^{K} V_k^{\pi^*}(s_0)$$

where $V_k^{\pi}(s)$ is the expected cost of policy π starting from s in episode k, $\pi^* = \operatorname{argmin}_{\pi \in \Pi} \sum_{k=1}^{K} V_k^{\pi}(s_0)$, and Π is the set of proper policies which reaches g with probability 1.

• Stochastic Environments: there exists a fixed unknown mean cost function $c \in [0, 1]^{S \times A}$.

- Stochastic Environments: there exists a fixed unknown mean cost function $c \in [0, 1]^{S \times A}$.
 - Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d cost sample with mean c(s, a).

- Stochastic Environments: there exists a fixed unknown mean cost function $c \in [0, 1]^{S \times A}$.
 - Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d cost sample with mean c(s, a).
 - Stochastic Adversary, Full information (SAF): before learning starts, adversary samples K i.i.d cost functions $\{c_k\}_{k=1}^{K}$ with mean c; learner suffers $c_k(s, a)$ when it visits (s, a), and the learner observes the entire cost function c_k at the end of episode k.

- Stochastic Environments: there exists a fixed unknown mean cost function $c \in [0, 1]^{S \times A}$.
 - Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d cost sample with mean c(s, a).
 - Stochastic Adversary, Full information (SAF): before learning starts, adversary samples K i.i.d cost functions $\{c_k\}_{k=1}^{K}$ with mean c; learner suffers $c_k(s, a)$ when it visits (s, a), and the learner observes the entire cost function c_k at the end of episode k.
 - Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner observes the costs of visited state-action pairs {c_k(s^k_i, a^k_i)}^{l_k}_{i=1} at the end of episode k.

- Stochastic Environments: there exists a fixed unknown mean cost function $c \in [0, 1]^{S \times A}$.
 - Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d cost sample with mean c(s, a).
 - Stochastic Adversary, Full information (SAF): before learning starts, adversary samples K i.i.d cost functions $\{c_k\}_{k=1}^{K}$ with mean c; learner suffers $c_k(s, a)$ when it visits (s, a), and the learner observes the entire cost function c_k at the end of episode k.
 - Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner observes the costs of visited state-action pairs {c_k(s^k_i, a^k_i)}^{l_k}_{i=1} at the end of episode k.
- Adversarial Environments: in episode k, the environment picks a cost function c_k possibly depending on the interaction history.
 - Adversarial costs, Full information (AF)
 - Adversarial costs, Bandit feedback (AB)

Our Results

We obtain near optimal regret bounds in various settings.

	Regret	Time	Space	Feedback	
Cohen et al., 2021	$B_{\star}\sqrt{SAK}$	$S^3 A^2 T_{max}$	$S^2 A T_{max}$	sc	
Our work	$B_{\star}S\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	50	
Chen and Luo, 2021	$\sqrt{DT_{\star}K} + DS\sqrt{AK}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	SAE	
Our work	$\sqrt{DT_{\star}K} + DS\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	341	
Chen and Luo, 2021	$\sqrt{SADT_{\star}K} + DS\sqrt{AK}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	SAR	
Our work	$\sqrt{SADT_{\star}K} + DS\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	JAD	
Chen and Luo, 2021	$\sqrt{S^2 A D T_\star K}$	$poly(S, A, T_{max}) \cdot K$	S^2AT_{max}	٨٢	
Our work	$\sqrt{(S^2A+T_\star)DT_\star K}$	$S^2 A T_{max} K$	S^2A	AI	
Chen and Luo, 2021	$\sqrt{S^3 A^2 D T_\star K}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	AB	
Our work	$\sqrt{S^2 A T_{max}^5 K}$	$poly(S, A, T_{max}) \cdot K$	S^2A	AD	

 $B_{\star} = \max_{s} V^{\pi^{\star}}(s)$, $T_{\star} = T^{\pi^{\star}}(s_{\text{init}})$, $T_{\max} = \max_{s} T^{\pi^{\star}}(s)$, and $D = \max_{s} \min_{\pi} T^{\pi}(s)$, where $T^{\pi}(s)$ is the hitting time of policy π starting from state s.

Issue: PO requires policy evaluation, which does not make sense for policies that may not reach the goal.

Issue: PO requires policy evaluation, which does not make sense for policies that may not reach the goal.

Solution: Approximate SSP by a simpler MDP model, where all policies are proper.

	Optimal regret?	Stationary policy?
Finite-Horizon	Yes	No (\times horizon)
Discounted	No	Yes

Issue: PO requires policy evaluation, which does not make sense for policies that may not reach the goal.

Solution: Approximate SSP by a simpler MDP model, where all policies are proper.

	Optimal regret?	Stationary policy?
Finite-Horizon	Yes	No ($ imes$ horizon)
Discounted	No	Yes

Finite-Horizon + *Discounted* = ? **Question:** Can we obtain a best-of-both-world approximation? Finite-Horizon + Discounted = Stacked Discounted

 $\mathcal{M} \to \widetilde{\mathcal{M}}$: stack H γ -discounted MDPs

- State space: $\mathcal{S} \times [H+1]$.
- In each step the learner transits to the next layer w.p. 1γ : $P((s', h)|(s, h), a) = \gamma P(s'|s, a), P((s', h+1)|(s, h), a) = (1 - \gamma)P(s'|s, a), \text{ and}$ P(g|(s, h), a) = P(g|s, a).

Finite-Horizon + Discounted = Stacked Discounted

 $\mathcal{M} \to \widetilde{\mathcal{M}}$: stack H γ -discounted MDPs

- State space: $\mathcal{S} \times [H+1]$.
- In each step the learner transits to the next layer w.p. 1γ : $P((s', h)|(s, h), a) = \gamma P(s'|s, a), P((s', h+1)|(s, h), a) = (1 - \gamma)P(s'|s, a), \text{ and}$ P(g|(s, h), a) = P(g|s, a).

Finite-Horizon + Discounted = Stacked Discounted

 $\mathcal{M} \to \widetilde{\mathcal{M}}$: stack H γ -discounted MDPs

- State space: $\mathcal{S} \times [H+1]$.
- In each step the learner transits to the next layer w.p. 1γ : $P((s', h)|(s, h), a) = \gamma P(s'|s, a), P((s', h+1)|(s, h), a) = (1 - \gamma)P(s'|s, a), \text{ and}$ P(g|(s, h), a) = P(g|s, a).

 $\tilde{\pi} \to \pi = \sigma(\tilde{\pi})$: maintain a counter *h*, increase *h* by 1 with probability $1 - \gamma$ at every time step; follow $\tilde{\pi}(\cdot|s, h)$ for $h \leq H$, and switch to fast policy when h = H + 1.

Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of $\mathcal{O}(T_{\max} \ln \frac{1}{\epsilon})$ to achieve ϵ approximation error.

 ${\cal T}_{\rm max}:$ expected hitting time of π^{\star} over all states

Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of $\mathcal{O}(\mathcal{T}_{\max} \ln \frac{1}{\epsilon})$ to achieve ϵ approximation error.

Observation 2: a discounted MDP with discount factor $\gamma \approx$ a finite-horizon MDP with horizon $\frac{1}{1-\gamma}$ (compressed representation).

 T_{\max} : expected hitting time of π^* over all states

Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of $\mathcal{O}(\mathcal{T}_{\max} \ln \frac{1}{\epsilon})$ to achieve ϵ approximation error.

Observation 2: a discounted MDP with discount factor $\gamma \approx$ a finite-horizon MDP with horizon $\frac{1}{1-\gamma}$ (compressed representation).

Implication: Setting $\gamma = 1 - \frac{1}{T_{\text{max}}}$, we only need $H = \mathcal{O}(\ln K)$ layers to achieve 1/K approximation error. This gives a nearly stationary policy that only changes $\mathcal{O}(\ln K)$ times.

 T_{\max} : expected hitting time of π^* over all states

Template of PO Algorithm for SSP

Initialize: \mathcal{P}_1 as the set of all possible transitions in $\widetilde{\mathcal{M}}$, $\eta > 0$ some learning rate. **for** k = 1, ..., K **do** Compute $\pi_k(a|s, h) \propto \exp\left(-\eta \sum_{j=1}^{k-1} (\widetilde{Q}_j(s, a, h) - B_j(s, a, h))\right)$, where \widetilde{Q}_j is some optimistic action-value estimator and B_j is some exploration bonus.

Template of PO Algorithm for SSP

Initialize: \mathcal{P}_1 as the set of all possible transitions in $\widetilde{\mathcal{M}}$, $\eta > 0$ some learning rate. for k = 1, ..., K do Compute $\pi_k(a|s, h) \propto \exp\left(-\eta \sum_{j=1}^{k-1} (\widetilde{Q}_j(s, a, h) - B_j(s, a, h))\right)$, where \widetilde{Q}_j is some optimistic action-value estimator and B_j is some exploration bonus. Execute $\sigma(\pi_k)$ for one episode. Compute Bernstein-style transition confidence set \mathcal{P}_{k+1} .

Template of PO Algorithm for SSP

Initialize: \mathcal{P}_1 as the set of all possible transitions in $\widetilde{\mathcal{M}}$, $\eta > 0$ some learning rate. for k = 1, ..., K do Compute $\pi_k(a|s, h) \propto \exp\left(-\eta \sum_{j=1}^{k-1} (\widetilde{Q}_j(s, a, h) - B_j(s, a, h))\right)$, where \widetilde{Q}_j is some optimistic action-value estimator and B_j is some exploration bonus. Execute $\sigma(\pi_k)$ for one episode. Compute Bernstein-style transition confidence set \mathcal{P}_{k+1} .

Optimistic Value Functions: denote by $Q^{\pi,\mathcal{P},c}$ (or $V^{\pi,\mathcal{P},c}$) the optimistic action-value function (or value function) w.r.t policy π , transition confidence set \mathcal{P} , and cost function c.

Algorithm Design: simply set $B_k(s, a, h) = 0$, and

• Action-value estimator $\widetilde{Q}_k = Q^{\pi_k, \mathcal{P}_k, \widetilde{c}_k}$ for some cost function \widetilde{c}_k :

$$\widetilde{c}_k = (1 + \lambda \widehat{Q}_k(s, a, h))\widehat{c}_k(s, a, h) + e_k(s, a, h),$$

where $\widehat{Q}_k = Q^{\pi_k, \mathcal{P}_k, \widehat{c}_k}$, \widehat{c}_k is some standard cost estimator, and e_k is some correction term specified below.

Algorithm Design: simply set $B_k(s, a, h) = 0$, and

• Action-value estimator $\widetilde{Q}_k = Q^{\pi_k, \mathcal{P}_k, \widetilde{c}_k}$ for some cost function \widetilde{c}_k :

$$\widetilde{c}_k = (1 + \lambda \widehat{Q}_k(s, a, h))\widehat{c}_k(s, a, h) + e_k(s, a, h),$$

where $\widehat{Q}_k = Q^{\pi_k, \mathcal{P}_k, \widehat{c}_k}$, \widehat{c}_k is some standard cost estimator, and e_k is some correction term specified below.

- Optimistic cost estimator \hat{c}_k is some standard Bernstein-style optimistic cost estimator, such that $\hat{c}_k(s, a) \leq c(s, a)$ with high probability.
- Correction term e_k(s, a, h) is 0 for stochastic costs (SC); (8ι√c_k(s, a, h)/k + β'Q_k(s, a, h))I{h ≤ H} for stochastic adversary with full information; and βQ_k(s, a, h)I{h ≤ H} for stochastic adversary with bandit feedback.

Theorem

With the instantiation above, we have $R_K = \tilde{\mathcal{O}}(B_*S\sqrt{AK})$ with stochastic costs; $R_K = \tilde{\mathcal{O}}(\sqrt{DT_*K} + DS\sqrt{AK})$ with stochastic adversary, full information; and $R_K = \tilde{\mathcal{O}}(\sqrt{DT_*SAK} + DS\sqrt{AK})$ with stochastic adversary, bandit feedback.

Theorem

With the instantiation above, we have $R_K = \tilde{O}(B_*S\sqrt{AK})$ with stochastic costs; $R_K = \tilde{O}(\sqrt{DT_*K} + DS\sqrt{AK})$ with stochastic adversary, full information; and $R_K = \tilde{O}(\sqrt{DT_*SAK} + DS\sqrt{AK})$ with stochastic adversary, bandit feedback.

Analysis Highlights

• A new correction term $\lambda \hat{c}_k(s, a, h) \hat{Q}_k(s, a, h)$ to deal with transition estimation error, which requires a regret bound starting from any state-action pair that PO enjoys.

Theorem

With the instantiation above, we have $R_K = \tilde{O}(B_*S\sqrt{AK})$ with stochastic costs; $R_K = \tilde{O}(\sqrt{DT_*K} + DS\sqrt{AK})$ with stochastic adversary, full information; and $R_K = \tilde{O}(\sqrt{DT_*SAK} + DS\sqrt{AK})$ with stochastic adversary, bandit feedback.

Analysis Highlights

- A new correction term $\lambda \hat{c}_k(s, a, h) \hat{Q}_k(s, a, h)$ to deal with transition estimation error, which requires a regret bound starting from any state-action pair that PO enjoys.
- Carefully designed correction term *e_k* to deal with cost estimation error under different feedback types.

Theorem

With the instantiation above, we have $R_K = \tilde{O}(B_*S\sqrt{AK})$ with stochastic costs; $R_K = \tilde{O}(\sqrt{DT_*K} + DS\sqrt{AK})$ with stochastic adversary, full information; and $R_K = \tilde{O}(\sqrt{DT_*SAK} + DS\sqrt{AK})$ with stochastic adversary, bandit feedback.

Analysis Highlights

- A new correction term $\lambda \hat{c}_k(s, a, h) \hat{Q}_k(s, a, h)$ to deal with transition estimation error, which requires a regret bound starting from any state-action pair that PO enjoys.
- Carefully designed correction term *e_k* to deal with cost estimation error under different feedback types.
- An improved PO analysis that reduces the cost of policy update from $\tilde{\mathcal{O}}(\sqrt{\kappa})$ to $\tilde{\mathcal{O}}(\kappa^{1/4})$.

PO Algorithms for SSP: Adversarial Environments

Algorithm Design (Full Information)

- Action-value estimator $\widetilde{Q}_k = Q^{\pi_k, \mathcal{P}_k, \widetilde{c}_k}$, where $\widetilde{c}_k = (1 + \lambda \widehat{Q}_k(s, a, h))c_k(s, a, h)$ and $\widehat{Q}_k = Q^{\pi_k, \mathcal{P}_k, c_k}$.
- Dilated bonus $B_k = B^{\pi_k, \mathcal{P}_k, b_k}$, where $b_k(s, a, h) = 2\eta \sum_a \pi_k(a|s, h) \widetilde{A}_k(s, a, h)^2$, $\widetilde{A}_k(s, a, h) = \widetilde{Q}_k(s, a, h) - \widetilde{V}_k(s, h)$, $\widetilde{V}_k = V^{\pi_k, \mathcal{P}_k, \widetilde{c}_k}$, and $B^{\pi, \mathcal{P}, b}$ is defined as: $B^{\pi, \mathcal{P}, b}(s, a, H + 1) = b(s, a, H + 1)$ and

$$B^{\pi,\mathcal{P},b}(s,a,h) = b(s,a,h) + \left(1 + \frac{1}{H'}\right) \max_{\widehat{P} \in \mathcal{P}} \widehat{P}_{s,a,h}\left(\sum_{a'} \pi(a'|\cdot,\cdot)B^{\pi,\mathcal{P},b}(\cdot,a',\cdot)\right),$$

where $H' = \frac{8(H+1)\ln(2K)}{1-\gamma}$ is the dilated coefficient.

PO Algorithms for SSP: Adversarial Environments

Theorem

With the instantiation above, we have $R_K = \tilde{O}(T_*\sqrt{DK} + \sqrt{S^2ADT_*K})$.

Analysis Highlights

- A shifting argument to obtain a refined stability term w.r.t the advantage function.
- Dilated bonus + correction term $\lambda \widehat{Q}_k(s, a, h)c_k(s, a, h)$ to transform the stability term into a term of order $\widetilde{\mathcal{O}}(\eta DT_*K)$ ($\widetilde{\mathcal{O}}(\eta T_*T_{\max}^2K)$ by vanilla analysis).

PO Algorithms for SSP: Adversarial Environments

Algorithm Design and Analysis (Bandit Feedback): mainly follows (Luo et al., 2021) with components adapted to the stacked discounted MDP.

Theorem

With the instantiation above, we have $R_K = \tilde{\mathcal{O}}(\sqrt{S^2 A T_{\max}^5 K})$.

Conclusion

We propose the first set of PO algorithms for SSP.

- 1. Stacked Discounted Approximation (SDA): approximate SSP by a simpler MDP with small bias, and learns nearly stationary policy.
- 2. Near optimal regret bounds in various settings.

	Regret	Time	Space	Feedback	
[CEMR21]	$B_{\star}\sqrt{SAK}$	$S^3 A^2 T_{max}$	$S^2 A T_{max}$	50	
Our work	$B_{\star}S\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	30	
[CL21]	$\sqrt{DT_{\star}K} + DS\sqrt{AK}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	SAE	
Our work	$\sqrt{DT_{\star}K} + DS\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	54	
[CL21]	$\sqrt{SADT_{\star}K} + DS\sqrt{AK}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	SAR	
Our work	$\sqrt{SADT_{\star}K} + DS\sqrt{AK}$	$S^2 A T_{max} K$	S^2A	JAD	
[CL21]	$\sqrt{S^2 A D T_\star K}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$		
Our work	$\sqrt{(S^2A+T_\star)DT_\star K}$	$S^2 A T_{max} K$	S^2A	A	
[CL21]	$\sqrt{S^3 A^2 D T_{\star} K}$	$poly(S, A, T_{max}) \cdot K$	$S^2 A T_{max}$	٨R	
Our work	$\sqrt{S^2 A T_{\max}^5 K}$	$poly(S, A, T_{max}) \cdot K$	S ² A	AD	