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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.
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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path
(SSP) problem.

® Episodic MDP with a goal state.
® The objective is to reach the goal state with minimum cost.
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Motivation

Policy Optimization (PO) is among the most popular methods in reinforcement learning

® Widely applied in practice: REINFORCE [W1992], TRPO [SLMJA2017], PPO
[SWDRK2017], etc.

® Easy to implement, computationally efficient.
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Motivation

Policy Optimization (PO) is among the most popular methods in reinforcement learning
® Widely applied in practice: REINFORCE [W1992], TRPO [SLMJA2017], PPO
[SWDRK2017], etc.
® Easy to implement, computationally efficient.
e Easily handle different types of environments: stochastic or adversarial costs
[SERM2020], function approximation [CYJW2020], non-stationary environments
[FYWX2020], etc.

5/37



Our Contributions

We propose the first set of PO algorithms for SSP.

1. Stacked Discounted Approximation (SDA): approximate SSP by a simpler MDP with
some best-of-both-worlds property.

2. Near optimal regret bounds in various settings including both stochastic costs and
adversarial costs.
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Problem Formulation

for episode k =1,...,K do
learner starts in state sf =sp € S,i + 1
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Problem Formulation

for episode k =1,...,K do
learner starts in state sf =sp € S,i + 1
while s,"( # g do
learner chooses action a,’-‘ € A, suffer cost c,-k (may not observe immediately), and
observes state s,-kJrl ~ P(-|sk, ak)
i+—i+1
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Problem Formulation

for episode k =1,...,K do
learner starts in state sf =sp € S,i + 1
while s,"( # g do
learner chooses action ak € A, suffer cost c/ (may not observe immediately), and
observes state s ~ P( sk, ak)
i+—i+1

Regret: RK—ZZC _ka s0)

k=1 i=1
where V[ (s) is the expected cost of policy 7 starting from s in episode k,

7 = argmin,cn Soh_, V7 (s0), and M is the set of proper policies which reaches g with
probability 1.
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Feedback Type

e Stochastic Environments: there exists a fixed unknown mean cost function
c €[0,1]5*A.
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Feedback Type

¢ Stochastic Environments: there exists a fixed unknown mean cost function
SxA
c € [0, 1]°>%4,
® Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d
cost sample with mean ¢(s, a).
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Feedback Type

® Stochastic Environments: there exists a fixed unknown mean cost function
c €[0,1]5*A.
® Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d
cost sample with mean ¢(s, a).
® Stochastic Adversary, Full information (SAF): before learning starts, adversary samples
K i.i.d cost functions {cx}X_; with mean c; learner suffers cx(s, a) when it visits (s, a),
and the learner observes the entire cost function ¢, at the end of episode k.
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Feedback Type

¢ Stochastic Environments: there exists a fixed unknown mean cost function
c €[0,1]5*A.

® Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d
cost sample with mean ¢(s, a).

® Stochastic Adversary, Full information (SAF): before learning starts, adversary samples
K i.i.d cost functions {cx}X_; with mean c; learner suffers cx(s, a) when it visits (s, a),
and the learner observes the entire cost function ¢, at the end of episode k.

® Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner

observes the costs of visited state-action pairs {cx(s¥,a¥)}" , at the end of episode k.
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Feedback Type

¢ Stochastic Environments: there exists a fixed unknown mean cost function
SxA
c € [0, 1]°>%4,
® Stochastic Costs (SC): whenever learner visits (s, a), it immediately observes an i.i.d

cost sample with mean ¢(s, a).
® Stochastic Adversary, Full information (SAF): before learning starts, adversary samples

K i.i.d cost functions {cx}X_; with mean c; learner suffers cx(s, a) when it visits (s, a),

and the learner observes the entire cost function ¢, at the end of episode k.
® Stochastic Adversary, Bandit feedback (SAB): same as above except that the learner
observes the costs of visited state-action pairs {cx(s¥,a¥)}" , at the end of episode k.

e Adversarial Environments: in episode k, the environment picks a cost function ¢
possibly depending on the interaction history.
® Adversarial costs, Full information (AF)
® Adversarial costs, Bandit feedback (AB)
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Our Results

We obtain near optimal regret bounds in various settings.

Regret Time Space Feedback
Cohen et al., 2021 B,VSAK S3A2 Trnax S2 AT max c
Our work B,.SVAK S2ATmax K S2A
Chen and Luo, 2021 | /DT.K + DSVAK | poly(S, A, Tmax) - K | S2ATmax
SAF
Our work VDT.K + DSVAK S2ATmax K S2A
Chen and Luo, 2021 | /SADT,K + DSVAK | poly(S, A, Trmax) - K | S?ATmax SAB
Our work VSADT,K + DSVAK S2ATma K S2A
Chen and Luo, 2021 \/SZADT*K poly(S, A, Tmax) - K S2 AT max AF
Our work V(S2A+ T,)DT.K S2ATmaxK S2A
Chen and Luo, 2021 \/S3A2DT, K poly(S, A, Tmax) - K | S?ATmax AB
Our work V/S2ATE K poly(S, A, Tmax) - K S2A

B, = maxs V™ (s), T, =

where T7(s) is the hitting time of policy 7 starting from state s.

™ (Sinit), Tmax = Maxs T7 (s), and D = maxs min, T™(s),
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Stacked Discounted Approximation

Issue: PO requires policy evaluation, which does not make sense for policies that may
not reach the goal.
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Stacked Discounted Approximation

Issue: PO requires policy evaluation, which does not make sense for policies that may
not reach the goal.
Solution: Approximate SSP by a simpler MDP model, where all policies are proper.

Optimal regret? | Stationary policy?
Finite-Horizon Yes No (x horizon)
Discounted No Yes
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Stacked Discounted Approximation

Issue: PO requires policy evaluation, which does not make sense for policies that may
not reach the goal.
Solution: Approximate SSP by a simpler MDP model, where all policies are proper.

Optimal regret? | Stationary policy?
Finite-Horizon Yes No (x horizon)
Discounted No Yes

Finite-Horizon + Discounted = ?
‘Question: Can we obtain a best-of-both-world approximation?‘
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Stacked Discounted Approximation

Finite-Horizon + Discounted = Stacked Discounted

M = M: stack H ~-discounted MDPs
e State space: S x [H +1].

® In each step the learner transits to the next layer w.p. 1 — :
P((s', h)I(s, h), a) = vP(s|s,a), P((s', h +1)|(s, h), a) = (1 — 7)P(s'|s, a), and
P(gl(s, h),a) = P(gls, a).
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Stacked Discounted Approximation

Finite-Horizon + Discounted = Stacked Discounted

M = M: stack H ~-discounted MDPs
e State space: S x [H +1].
® In each step the learner transits to the next layer w.p. 1 — :
P((s', h)|(s, h),a) = vP(s'|s,a), P((s’,h+ 1)|(s, h),a) = (1 —v)P(s']s,a), and
P(g|(5a h)’ a) = 'D(g’Sa a)'
e When h = H + 1, the learner suffers a terminal cost of O(D) (high probability upper
bound on the cost of executing fast policy).
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Stacked Discounted Approximation

Finite-Horizon + Discounted = Stacked Discounted

M = M: stack H ~-discounted MDPs
e State space: S x [H +1].
® In each step the learner transits to the next layer w.p. 1 — :
P((s', h)|(s, h),a) = vP(s'|s,a), P((s’,h+ 1)|(s, h),a) = (1 —v)P(s']s,a), and
P(g|(5a h)’ a) = 'D(g’Sa a)'
e When h = H + 1, the learner suffers a terminal cost of O(D) (high probability upper
bound on the cost of executing fast policy).
T — 7 = o(7): maintain a counter h, increase h by 1 with probability 1 — -y at every time
step; follow 7(+|s, h) for h < H, and switch to fast policy when h = H + 1.
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Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of O( Tpax In %) to
achieve € approximation error.

Tmax: expected hitting time of 7* over all
states
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Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of O( Tpax In %) to
achieve € approximation error.
Observation 2: a discounted MDP with discount factor v &~ a finite-horizon MDP with

. 1 .
horizon o (compressed representation).

Tmax: expected hitting time of 7* over all
states
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Stacked Discounted Approximation

Observation 1: With finite-horizon approximation, we need horizon of O( Tpax In %) to
achieve € approximation error.

Observation 2: a discounted MDP with discount factor v &~ a finite-horizon MDP with
horizon ﬁ (compressed representation).

Implication: Setting v =1 — ﬁ we only need H = O(In K) layers to achieve 1/K
approximation error. This gives a nearly stationary policy that only changes O(In K)

times.

O(Tmax In K)

Tmax: expected hitting time of 7* over all
""" states

2T max 2T max 2T max
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Template of PO Algorithm for SSP

Initialize: P; as the set of all possible transitions in M, 1 > 0 some learning rate.
for k=1,...,K do

Compute 7x(als, h) o< exp <—77 Zjlfz_ll(éj(s, a, h) — Bj(s, a, h))) where (51- is some op-
timistic action-value estimator and B; is some exploration bonus.
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Template of PO Algorithm for SSP

Initialize: P; as the set of all possible transitions in M, 1 > 0 some learning rate.
for k=1,...,K do
Compute 7x(als, h) o< exp <—77 Zjlfz_ll(éj(s, a, h) — Bj(s, a, h))) where (51- is some op-
timistic action-value estimator and B; is some exploration bonus.
Execute o(my) for one episode.
Compute Bernstein-style transition confidence set Py 1.
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Template of PO Algorithm for SSP

Initialize: P; as the set of all possible transitions in M, 1 > 0 some learning rate.
for k=1,...,K do
Compute 7x(als, h) o< exp (—77 Zjlfz_ll(éj(s, a, h) — Bj(s, a, h))) where (51- is some op-
timistic action-value estimator and B; is some exploration bonus.
Execute o(my) for one episode.
Compute Bernstein-style transition confidence set Py 1.

Optimistic Value Functions: denote by Q™7 (or V™7:) the optimistic action-value
function (or value function) w.r.t policy 7, transition confidence set P, and cost function
c.
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PO Algorithms for SSP: Stochastic Environments

Algorithm Design: simply set By(s,a, h) =0, and

® Action-value estimator ék = Q™Pk:C for some cost function &:
¢k = (1 + AQk(s, a, h))ck(s, a, h) + ex(s, a, h),

where Qi = Q™Pr:C & is some standard cost estimator, and e, is some correction
term specified below.
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PO Algorithms for SSP: Stochastic Environments

Algorithm Design: simply set By(s,a, h) =0, and

e Action-value estimator Q, = Q™ Pk for some cost function ¢:
¢k = (1 + AQk(s, a, h))ck(s, a, h) + ex(s, a, h),
where Q = Q’T’“Pk’?k, Ck is some standard cost estimator, and ey is some correction

term specified below.

e Optimistic cost estimator ¢, is some standard Bernstein-style optimistic cost
estimator, such that ¢x(s, a) < c(s, a) with high probability.

® Correction term e(s, a, h) is 0 for stochastic costs (SC);
(8t\/Ck(s,a,h)/k + B'Qk(s,a, h))I{h < H} for stochastic adversary with full
information; and BQx(s, a, h)I{h < H} for stochastic adversary with bandit feedback.
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PO Algorithms for SSP: Stochastic Environments

Theorem

With the instantiation above, we have Rx = O(B,SVAK) with stochastic costs;
Rk = O(VDT.K + DSV AK) with stochastic adversary, full information; and
Rk = O(v/DT,.SAK + DSV AK) with stochastic adversary, bandit feedback.
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PO Algorithms for SSP: Stochastic Environments

Theorem

With the instantiation above, we have Rx = O(B,SVAK) with stochastic costs;
Rk = O(VDT.K + DSV AK) with stochastic adversary, full information; and
Rk = O(v/DT,.SAK + DSV AK) with stochastic adversary, bandit feedback.

Analysis Highlights
® A new correction term Ack(s, a, h)Qx(s, a, h) to deal with transition estimation error,
which requires a regret bound starting from any state-action pair that PO enjoys.
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PO Algorithms for SSP: Stochastic Environments

Theorem

With the instantiation above, we have Ry = O(B,SVAK) with stochastic costs;
Rk = O(VDT.K + DSV AK) with stochastic adversary, full information; and
Rk = O(v/DT,.SAK + DSV AK) with stochastic adversary, bandit feedback.

Analysis Highlights

® A new correction term Ack(s, a, h)Qx(s, a, h) to deal with transition estimation error,
which requires a regret bound starting from any state-action pair that PO enjoys.

o Carefully designed correction term e to deal with cost estimation error under
different feedback types.
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PO Algorithms for SSP: Stochastic Environments

Theorem

With tlle instantiation above, we have Rk = @(B*S V AK) with stochastic costs;
Rk = O(VDT.K + DS VAK) with stochastic adversary, full information; and
Rk = O(VDT,SAK + DS+ AK) with stochastic adversary, bandit feedback.

Analysis Highlights

® A new correction term Ack(s, a, h)Qx(s, a, h) to deal with transition estimation error,
which requires a regret bound starting from any state-action pair that PO enjoys.

o Carefully designed correction term e to deal with cost estimation error under
different feedback types.

® An improved PO analysis that reduces the cost of policy update from (’5(\/?) to
O(KY4).
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PO Algorithms for SSP: Adversarial Environments

Algorithm Design (Full Information)
® Action-value estimator Qx = QP where ¢ = (1 + )\ak(s, a, h))ck(s, a, h)
and Qx = Q™+ Pk,
* Dilated bonus By = B™«Fkbx where by (s, a, h) = 2n >, mk(als, h)A(s, a, h)?,
A(s,a, h) = Qi(s, a, h) — Vi(s, h), Vic = V™Peé and B™Pb is defined as:
B™Pb(s,a,H 4 1) = b(s,a, H+ 1) and

/

1 ~
B™Pb(s,a, h) = b(s,a, h) + (1 + H’> rga; Ps a.h <Z w(d|-,-)B™Pb(, d, ))
€

a

where 1 — 8(H+1)In(2K)

= is the dilated coefficient.
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PO Algorithms for SSP: Adversarial Environments

Theorem
With the instantiation above, we have Rk = @(T*\/ DK + \/S?ADT,K).

Analysis Highlights
® A shifting argument to obtain a refined stability term w.r.t the advantage function.

* Dilated bonus + correction term )\CA)k(s,Na, h)ck(s, a, h) to transform the stability
term into a term of order O(nDT.K) (O(nT, T2, K) by vanilla analysis).
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PO Algorithms for SSP: Adversarial Environments

Algorithm Design and Analysis (Bandit Feedback): mainly follows (Luo et al., 2021)
with components adapted to the stacked discounted MDP.

Theorem
With the instantiation above, we have Rx = O(,/S2ATS, K).
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Conclusion

We propose the first set of PO algorithms for SSP.
1. Stacked Discounted Approximation (SDA): approximate SSP by a simpler MDP with
small bias, and learns nearly stationary policy.

2. Near optimal regret bounds in various settings.

Regret Time Space Feedback

B,\V/'SAK S3A? Trax S? AT max oc

Our work B.SVAK S2ATmaxK S2A
VDT.K + DSVAK | poly(S, A, Tmax) - K | 52ATrmax SAF

Our work VDT,K + DSVAK S2ATmaxK S2A
VSADT,K + DSVAK | poly(S, A, Tmax) - K | S?ATmax SAB

Our work | /SADT,K + DSV AK S2ATmaxK S2A
\/S2ADT,. K poly(S, A, Tmax) - K | S?ATmax AF

Ourwork | +/(S2A+ T,)DT.K S2ATmaxK S2A
\/S3A2DT, K poly(S, A, Tmax) - K | S2ATmax AB

Our work V/S2ATE K poly(S, A, Tmax) - K | S2A
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