Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, Haipeng Luo
University of Southern California

October 8, 2021

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.
- Ends interaction only when the goal state is reached

Related Works

S: \#states, A: \#actions, K: \#episodes, D: SSP-diameter $c_{\text {min }}$: minimum cost, B_{\star} : maximum expected cost of optimal policy over all states T_{\star} : maximum expected hitting time of optimal policy starting from any state

- UC-SSP (Tarbouriech et al., 2020): $\tilde{\mathcal{O}}\left(D S \sqrt{\frac{D}{C_{\text {min }}} A K}+S^{2} A D^{2}\right)$
- Bernstein-SSP (Cohen et al., 2020): $\tilde{\mathcal{O}}\left(B_{\star} S \sqrt{A K}+\sqrt{\frac{B_{\star}^{3} S^{2} A^{2}}{C_{\text {min }}}}\right)$
- ULCVI (Cohen et al., 2021): $\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+T_{\star}^{4} S^{2} A\right)$
- EB-SSP (Tarbouriech et al., 2021): $\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$
(Minimax Optimal)
(Minimax Optimal)
- Lower Bound (Cohen et al., 2020): $\Omega\left(B_{\star} \sqrt{S A K}\right)$

Related Works

S: \#states, A: \#actions, K: \#episodes, D: SSP-diameter $c_{\text {min }}$: minimum cost, B_{\star} : maximum expected cost of optimal policy over all states T_{\star} : maximum expected hitting time of optimal policy starting from any state

- UC-SSP (Tarbouriech et al., 2020): $\tilde{\mathcal{O}}\left(D S \sqrt{\frac{D}{C_{\text {min }}} A K}+S^{2} A D^{2}\right)$
- Bernstein-SSP (Cohen et al., 2020): $\tilde{\mathcal{O}}\left(B_{\star} S \sqrt{A K}+\sqrt{\frac{B_{\star}^{3} S^{2} A^{2}}{C_{\text {min }}}}\right)$
- ULCVI (Cohen et al., 2021): $\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+T_{\star}^{4} S^{2} A\right)$
- EB-SSP (Tarbouriech et al., 2021): $\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$
(Minimax Optimal)
(Minimax Optimal)
- Lower Bound (Cohen et al., 2020): $\Omega\left(B_{\star} \sqrt{S A K}\right)$

Techniques applied in previous works are quite different from each other, and some of these algorithms are fairly complicated.

Our Results

Our contribution: A generic template for regret minimization algorithms in SSP. Using this template, we develop two algorithms:

S: \#states, A: \#actions, D: SSP-diameter, K: \#episodes T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

	SVI-SSP	LCB-ADVANTAGE-SSP
Regret	$\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$	$\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star}^{5} S^{2} A / c_{\text {min }}^{4}\right)$
Algorithm type	Model-based	Model-free (the first)

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{\text {init }}, g, c, P\right)$, only P is unknown.

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{\text {init }}, g, c, P\right)$, only P is unknown.

Learning Protocol

```
for }k=1,\ldots,K\mathrm{ do
    learner starts in state s}\mp@subsup{s}{1}{k}=\mp@subsup{s}{\mathrm{ init }}{},i\leftarrow
    while s}\mp@subsup{s}{i}{k}\not=g\mathrm{ do
            learner chooses action }\mp@subsup{a}{i}{k}\in\mathcal{A}\mathrm{ and observes states
            si+1
            i\leftarrowi+1
    end
    learner suffers cost }\mp@subsup{\sum}{i=1}{\mp@subsup{l}{k}{}}c(\mp@subsup{s}{i}{k},\mp@subsup{a}{i}{k}
end
```


Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{\text {init }}, g, c, P\right)$, only P is unknown.
Notations:

- Policy π : maps state $s \in \mathcal{S}$ to an action $a \in \mathcal{A}$
- Proper: reaches g with probability 1

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{\text {init }}, g, c, P\right)$, only P is unknown.
Notations:

- Policy π : maps state $s \in \mathcal{S}$ to an action $a \in \mathcal{A}$
- Proper: reaches g with probability 1
- Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{\text {init }}, g, c, P\right)$, only P is unknown.

Notations:

- Policy π : maps state $s \in \mathcal{S}$ to an action $a \in \mathcal{A}$
- Proper: reaches g with probability 1
- Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$

Objective: minimize regret w.r.t. the best proper policy in hindsight

$$
R_{K}=\sum_{k=1}^{K}\left(\sum_{i=1}^{I_{k}} c\left(s_{k}^{i}, a_{k}^{i}\right)-V^{\pi^{\star}}\left(s_{0}\right)\right)
$$

where $\pi^{\star}=\operatorname{argmin}_{\pi \in \Pi_{\text {proper }}} V^{\pi}\left(s_{0}\right)$.

Generic Template

```
A General Algorithmic Template for SSP
Initialize: \(t \leftarrow 0, s_{1} \leftarrow s_{\text {init }}, Q(s, a) \leftarrow c(s, a)\) for all \((s, a)\).
for \(k=1, \ldots, K\) do
    repeat
    Increment time step \(t \stackrel{+}{\leftarrow} 1\).
    Take action \(a_{t}=\operatorname{argmin}_{a} Q\left(s_{t}, a\right)\), suffer cost \(c\left(s_{t}, a_{t}\right)\), and transit to \(s_{t}^{\prime}\).
    Update \(Q\) (so that it satisfies Property 1 and Property 2).
    if \(s_{t}^{\prime} \neq g\) then \(s_{t+1} \leftarrow s_{t}^{\prime}\); else \(s_{t+1} \leftarrow s_{\text {init }}\), break.
end
Record \(T \leftarrow t\) (that is, the total number of steps).
```


Generic Template

```
A General Algorithmic Template for SSP
Initialize: \(t \leftarrow 0, s_{1} \leftarrow s_{\text {init }}, Q(s, a) \leftarrow c(s, a)\) for all \((s, a)\).
for \(k=1, \ldots, K\) do
    repeat
    Increment time step \(t \stackrel{+}{\leftarrow} 1\).
    Take action \(a_{t}=\operatorname{argmin}_{a} Q\left(s_{t}, a\right)\), suffer cost \(c\left(s_{t}, a_{t}\right)\), and transit to \(s_{t}^{\prime}\).
    Update \(Q\) (so that it satisfies Property 1 and Property 2).
    if \(s_{t}^{\prime} \neq g\) then \(s_{t+1} \leftarrow s_{t}^{\prime}\); else \(s_{t+1} \leftarrow s_{\text {init }}\), break.
end
Record \(T \leftarrow t\) (that is, the total number of steps).
```

The key of analysis: Bounding the estimation error $Q^{\star}\left(s_{t}, a_{t}\right)-Q\left(s_{t}, a_{t}\right)$.

Generic Template

A General Algorithmic Template for SSP
Initialize: $t \leftarrow 0, s_{1} \leftarrow s_{\text {init }}, Q(s, a) \leftarrow c(s, a)$ for all (s, a).
for $k=1, \ldots, K$ do repeat

Increment time step $t \stackrel{+}{\leftarrow} 1$.
Take action $a_{t}=\operatorname{argmin}_{a} Q\left(s_{t}, a\right)$, suffer cost $c\left(s_{t}, a_{t}\right)$, and transit to s_{t}^{\prime}.
Update Q (so that it satisfies Property 1 and Property 2).
if $s_{t}^{\prime} \neq g$ then $s_{t+1} \leftarrow s_{t}^{\prime}$; else $s_{t+1} \leftarrow s_{\text {init }}$, break.
end
Record $T \leftarrow t$ (that is, the total number of steps).

The key of analysis: Bounding the estimation error $Q^{\star}\left(s_{t}, a_{t}\right)-Q\left(s_{t}, a_{t}\right)$.
Issue: Relatively straightforward in a discounted setting or a finite-horizon setting, but becomes highly non-trivial in SSP.

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart \widetilde{M}.

- It corresponds to interacting with M for H steps, and then teleporting to the goal state.

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart \widetilde{M}.

- It corresponds to interacting with M for H steps, and then teleporting to the goal state.
- We only need the optimal value functions of \widetilde{M} in the analysis:

$$
Q_{h}^{\star}(s, a)=c(s, a)+P_{s, a} V_{h-1}^{\star}, \quad V_{h}^{\star}(s)=\min _{a} Q_{h}^{\star}(s, a),
$$

with $Q_{0}^{\star}(s, a)=0$ for all (s, a).

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart \widetilde{M}.

- It corresponds to interacting with M for H steps, and then teleporting to the goal state.
- We only need the optimal value functions of \widetilde{M} in the analysis:

$$
Q_{h}^{\star}(s, a)=c(s, a)+P_{s, a} V_{h-1}^{\star}, \quad V_{h}^{\star}(s)=\min _{a} Q_{h}^{\star}(s, a),
$$

with $Q_{0}^{\star}(s, a)=0$ for all (s, a).

Lemma

For any value of $H, Q_{H}^{\star}(s, a) \leq Q^{\star}(s, a)$ holds for all (s, a). For any $\delta \in(0,1)$, if $H \geq \frac{4 B_{\star}}{c_{\text {min }}} \ln (2 / \delta)+1$, then $Q^{\star}(s, a) \leq Q_{H}^{\star}(s, a)+B_{\star} \delta$ holds for all (s, a).

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart \widetilde{M}.

- It corresponds to interacting with M for H steps, and then teleporting to the goal state.
- We only need the optimal value functions of \widetilde{M} in the analysis:

$$
Q_{h}^{\star}(s, a)=c(s, a)+P_{s, a} V_{h-1}^{\star}, \quad V_{h}^{\star}(s)=\min _{a} Q_{h}^{\star}(s, a),
$$

with $Q_{0}^{\star}(s, a)=0$ for all (s, a).

Lemma

For any value of $H, Q_{H}^{\star}(s, a) \leq Q^{\star}(s, a)$ holds for all (s, a). For any $\delta \in(0,1)$, if $H \geq \frac{4 B_{\star}}{c_{\text {min }}} \ln (2 / \delta)+1$, then $Q^{\star}(s, a) \leq Q_{H}^{\star}(s, a)+B_{\star} \delta$ holds for all (s, a).

Similar approximation has been done explicitly before (Chen et al., 2021a; Chen et al., 2021b; Cohen et al., 2021)

Implicit Finite Horizon Approximation

To perform approximation implicitly, we need the following two properties of estimate Q (let Q_{t} be the value of Q at the beginning of time step t):

- Property 1 (Optimism): with high probability, $Q_{t}(s, a) \leq Q^{\star}(s, a)$ for all $(s, a), t \geq 1$.

Implicit Finite Horizon Approximation

To perform approximation implicitly, we need the following two properties of estimate Q (let Q_{t} be the value of Q at the beginning of time step t):

- Property 1 (Optimism): with high probability, $Q_{t}(s, a) \leq Q^{\star}(s, a)$ for all $(s, a), t \geq 1$.
- Property 2 (Recursion): There exists a "bonus overhead" $\xi_{H}>0$ and an absolute constant $d>0$ such that the following holds with high probability:

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(Q_{h}^{\star}\left(s_{t}, a_{t}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right) \leq \xi_{H}+\left(1+\frac{d}{H}\right) \sum_{t=1}^{T}\left(V_{h-1}^{\star}\left(s_{t}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right)_{+} \\
& \sum_{t=1}^{T}\left(Q^{\star}\left(s_{t}, a_{t}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right) \leq \xi_{H}+\left(1+\frac{d}{H}\right) \sum_{t=1}^{T}\left(V^{\star}\left(s_{t}\right)-Q_{t}\left(s_{t}, a_{t}\right)\right)_{+}
\end{aligned}
$$

where $(x)_{+}=\max \{x, 0\}$.

Implicit Finite Horizon Approximation

Theorem

For any $\delta \in(0,1)$, if $H \geq \frac{4 B_{\star}}{c_{\text {min }}} \ln (2 / \delta)+1$, then the template ensures (with high probability) $R_{K}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} C_{K}}+B_{\star}+\delta C_{K}+\xi_{H}\right)$, where $C_{K}=\sum_{k=1}^{K} \sum_{i=1}^{l_{k}} c\left(s_{i}^{k}, a_{i}^{k}\right)$.

Implicit Finite Horizon Approximation

Theorem

For any $\delta \in(0,1)$, if $H \geq \frac{4 B_{\star}}{c_{\text {min }}} \ln (2 / \delta)+1$, then the template ensures (with high probability) $R_{K}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} C_{K}}+B_{\star}+\delta C_{K}+\xi_{H}\right)$, where $C_{K}=\sum_{k=1}^{K} \sum_{i=1}^{l_{k}} c\left(s_{i}^{k}, a_{i}^{k}\right)$.

Now if we ensure $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}\right)$ (with appropriate bonus), then $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}\right)$.
No explicit implementation of \widetilde{M} is required!

Optimal and Efficient Model-based Algorithm: SVI-SSP

Update $Q(s, a)$ for logarithmically many times for each (s, a).

Optimal and Efficient Model-based Algorithm: SVI-SSP

Update $Q(s, a)$ for logarithmically many times for each (s, a). When updating $Q(s, a)$, we apply the following update rule:

$$
Q(s, a) \leftarrow \max \left\{c(s, a)+\bar{P}_{s, a} V-b, Q(s, a)\right\}
$$

where \bar{P} is the empirical transition, $b \approx \max \left\{7 \sqrt{\frac{\mathbb{V}\left(\bar{P}_{s, a}, V\right)}{n}}, \frac{49 B_{\star}}{n}\right\}$ (Zhang et al., 2021).

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Theorem

SVI-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$.

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Theorem

SVI-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$.

- Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Theorem

SVI-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$.

- Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).
- Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Theorem

SVI-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$.

- Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).
- Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).
- Lower time complexity of updates: SVI-SSP: $\tilde{\mathcal{O}}\left(B_{\star} S^{2} A / c_{\text {min }}\right)$, EB-SSP: $\tilde{\mathcal{O}}\left(B_{\star}^{2} S^{5} A / c_{\text {min }}^{2}\right)$, ULCVI: $\tilde{\mathcal{O}}\left(S^{2} A T_{\star} K\right)$

Optimal and Efficient Model-based Algorithm: SVI-SSP

Theorem

SVI-SSP satisfies Property 1 and Property 2 with $d=1$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+B_{\star} S^{2} A+\delta C_{K}\right)$.

Theorem

SVI-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$.

- Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).
- Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).
- Lower time complexity of updates: SVI-SSP: $\tilde{\mathcal{O}}\left(B_{\star} S^{2} A / c_{\text {min }}\right)$, EB-SSP: $\tilde{\mathcal{O}}\left(B_{\star}^{2} S^{5} A / c_{\text {min }}^{2}\right)$, ULCVI: $\tilde{\mathcal{O}}\left(S^{2} A T_{\star} K\right)$
Our implicit finite horizon analysis is the key to achieve sparse updates.

The First Model-free Algorithm: LCB-Advantage-SSP

Update $Q(s, a)$ for logarithmically many times for each (s, a).

The First Model-free Algorithm: LCB-AdVAntage-SSP

Update $Q(s, a)$ for logarithmically many times for each (s, a).
Inspired by (Zhang et al., 2020), we update $Q(s, a)$ with the following variance reduced update rule (approximately)

$$
Q(s, a) \leftarrow \max \left\{c(s, a)+\frac{1}{n} \sum_{i=1}^{n} V^{\mathrm{ref}}\left(s_{t_{i}}^{\prime}\right)+\frac{1}{m} \sum_{i=1}^{m}\left(V\left(s_{t_{i}^{\prime}}^{\prime}\right)-V^{\mathrm{ref}}\left(s_{t_{i}^{\prime}}^{\prime}\right)\right)-b, Q(s, a)\right\},
$$

where m is the number of samples in current stage, and n is the number of samples up to current stage, and $V(s)=\min _{a} Q(s, a)$.

The First Model-free Algorithm: LCB-Advantage-SSP

Theorem

LCB-Advantage-SSP satisfies Property 1 and Property 2 with $d=3$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+\frac{B_{\star}^{2} H^{3} S^{2} A}{C_{\text {min }}}\right)$.

The First Model-free Algorithm: LCB-Advantage-SSP

Theorem

LCB-Advantage-SSP satisfies Property 1 and Property 2 with $d=3$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+\frac{B_{\star}^{2} H^{3} S^{2} A}{C_{\text {min }}}\right)$.

Theorem

LCB-Advantage-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+\frac{B_{\star}^{5} S^{2} A}{\tau_{\text {min }}^{\text {m }}}\right)$.

The First Model-free Algorithm: LCB-Advantage-SSP

Theorem

LCB-Advantage-SSP satisfies Property 1 and Property 2 with $d=3$ and $\xi_{H}=\tilde{\mathcal{O}}\left(\sqrt{B_{\star} S A C_{K}}+\frac{B_{\star}^{2} H^{3} S^{2} A}{C_{\text {min }}}\right)$.

Theorem

LCB-Advantage-SSP ensures $R_{K}=\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+\frac{B_{\star}^{5} S^{2} A}{c_{\text {min }}^{4}}\right)$.

- To make it parameter-free, we try logarithmically many different values of parameters simultaneously, each leading to a different update rule for Q and $V^{\text {ref }}$.

Summary

Our contribution: A generic template for regret minimization algorithms in SSP. Using this template, we develop two algorithms:

S: \#states, A: \#actions, D: SSP-diameter, K: \#episodes T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

	SVI-SSP	LCB-ADVANTAGE-SSP
Regret	$\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star} S^{2} A\right)$	$\tilde{\mathcal{O}}\left(B_{\star} \sqrt{S A K}+B_{\star}^{5} S^{2} A / c_{\text {min }}^{4}\right)$
Algorithm type	Model-based	Model-free (the first)

