Implicit Finite-Horizon Approximation and Efficient Optimal

Algorithms for Stochastic Shortest Path

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, Haipeng Luo
University of Southern California

October 8, 2021

1/15

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
e |Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

2/15

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
e |Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

4

® Games (such as Go) @,
e Car navigation "
® Robotic manipulation f 1

2/15

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
e |Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

4

® Games (such as Go)

e Car navigation

® Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.
® FEpisodic MDP with a goal state.

® Ends interaction only when the goal state is reached

2/15

Related Works

S: #states, A: #actions, K: #episodes, D: SSP-diameter
Cmin: Minimum cost, B,: maximum expected cost of optimal policy over all states
T,: maximum expected hitting time of optimal policy starting from any state

UC-SSP (Tarbouriech et al., 2020): @ (Ds, [BAK + 52AD2)

® Bernstein-SSP (Cohen et al., 2020): & (B*Sv AK + BicfjnAQ)

e ULCVI (Cohen et al., 2021): & (B*\/SAK + T;‘52A> (Minimax Optimal)
e EB-SSP (Tarbouriech et al., 2021): @ (B*\/SAK + B*52A> (Minimax Optimal)
® Lower Bound (Cohen et al., 2020): Q(B,V SAK)

3/15

Related Works

S: #states, A: #actions, K: #episodes, D: SSP-diameter
Cmin: Minimum cost, B,: maximum expected cost of optimal policy over all states
T,: maximum expected hitting time of optimal policy starting from any state

UC-SSP (Tarbouriech et al., 2020): @ (Ds, [BAK + 52AD2)

® Bernstein-SSP (Cohen et al., 2020): & (B*Sv AK + Bici?nAQ)
e ULCVI (Cohen et al., 2021): & (B*\/SAK + T;‘52A> (Minimax Optimal)
e EB-SSP (Tarbouriech et al., 2021): @ (B*\/SAK + B*52A> (Minimax Optimal)

® Lower Bound (Cohen et al., 2020): Q(B,V SAK)

Techniques applied in previous works are quite different from each other, and some of these
algorithms are fairly complicated.

3/15

Our Results

Our contribution: A generic template for regret minimization algorithms in SSP. Using this
template, we develop two algorithms:

S: #states, A: #actions, D: SSP-diameter, K: #episodes
T,: expected hitting time of optimal policy, ¢mi,: minimum cost

SVI-SSP LCB-ADVANTAGE-SSP
Regret O (B*\/SAK n 3*52A) O (B*\/SAK n 3352A/c:,in>
Algorithm type Model-based Model-free (the first)

4/15

Problem Formulation

SSP Model: MDP M = (S, A, Sinit, g, ¢, P), only P is unknown.

5/15

Problem Formulation

SSP Model: MDP M = (S, A, sinit, &, ¢, P), only P is unknown.

Learning Protocol

for k=1,...,K do

learner starts in state s{‘ = Sinit, | — 1

while s,-k # g do
learner chooses action a¥ € A and observes states
I+1NP(|SI’ I)
I—i+1

end

Ik k ok
learner suffers cost > * ; c(sf, af)
end

5/15

Problem Formulation

SSP Model: MDP M = (S, A, Sinit, &, ¢, P), only P is unknown.

Notations:
® Policy 7m: maps state s € S to an action a € A
® Proper: reaches g with probability 1

6/15

Problem Formulation

SSP Model: MDP M = (S, A, Sinit, &, ¢, P), only P is unknown.

Notations:
® Policy 7m: maps state s € S to an action a € A
® Proper: reaches g with probability 1

® Value function V7(s) = E[YI_; c(s',a)|P, 7, s' = s]

6/15

Problem Formulation

SSP Model: MDP M = (S, A, Sinit, &, ¢, P), only P is unknown.

Notations:

® Policy 7m: maps state s € S to an action a € A
® Proper: reaches g with probability 1

® Value function V7(s) = E[YI_; c(s',a)|P, 7, s' = s]
Objective: minimize regret w.r.t. the best proper policy in hindsight
K Iy o
=3 (St v (o).
k=1 \i=1

* H ™
where 7 = argmin,cn . V™ (s0).

6/15

Generic Template

A General Algorithmic Template for SSP

Initialize: t < 0, s1 < sinit, Q(s, a) < (s, a) for all (s, a).
for k=1,...,K do
repeat
Increment time step t &1
Take action a; = argmin, Q(s¢, a), suffer cost c(s¢, a;), and transit to s;.
Update @ (so that it satisfies Property 1 and Property 2).
if s; # g then s;;1 < s;; else s;11 < Sinit, break.
end
Record T < t (that is, the total number of steps).

7/15

Generic Template

A General Algorithmic Template for SSP

Initialize: t < 0, s1 < sinit, Q(s, a) < (s, a) for all (s, a).
for k=1,...,K do
repeat
Increment time step t &1
Take action a; = argmin, Q(s¢, a), suffer cost c(s¢, a¢), and transit to s;.
Update @ (so that it satisfies Property 1 and Property 2).
if s; # g then s;;1 < s;; else s;11 < Sinit, break.
end
Record T < t (that is, the total number of steps).

The key of analysis: Bounding the estimation error Q*(s¢, ar) — Q(st, at).

7/15

Generic Template

A General Algorithmic Template for SSP

Initialize: t < 0, s1 < sinit, Q(s, a) < (s, a) for all (s, a).
for k=1,...,K do
repeat
Increment time step t &1
Take action a; = argmin, Q(s¢, a), suffer cost c(s¢, a¢), and transit to s;.
Update @ (so that it satisfies Property 1 and Property 2).
if s; # g then s;;1 < s;; else s;11 < Sinit, break.
end
Record T < t (that is, the total number of steps).

The key of analysis: Bounding the estimation error Q*(s¢, ar) — Q(st, at).
Issue: Relatively straightforward in a discounted setting or a finite-horizon setting, but

becomes highly non-trivial in SSP.
7/15

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart M.

® |t corresponds to interacting with M for H steps, and then teleporting to the goal state.

8/15

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart M.
® |t corresponds to interacting with M for H steps, and then teleporting to the goal state.

® We only need the optimal value functions of M in the analysis:
Qp(s,a) =c(s,a) + Ps V)4, Vi (s) = min Qf(s, a),
a

with Q3 (s,a) = 0 for all (s, a).

8/15

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart M.
® |t corresponds to interacting with M for H steps, and then teleporting to the goal state.

® We only need the optimal value functions of M in the analysis:

Qh(s;a) = c(s,a) + PsaVi_y, Vi(s) = min Qi(s, a),
a

with Q3 (s,a) = 0 for all (s, a).

For any value of H, Qf;(s,a) < Q*(s, a) holds for all (s,a). For any 6 € (0,1), if
H > %B=1n(2/6) + 1, then Q*(s,a) < Q}(s,a) + B.§ holds for all (s, a).

8/15

Implicit Finite Horizon Approximation

Solution: approximate an SSP instance M with a finite-horizon counterpart M.
® |t corresponds to interacting with M for H steps, and then teleporting to the goal state.

® We only need the optimal value functions of M in the analysis:

Qh(s;a) = c(s,a) + PsaVi_y, Vi(s) = min Qi(s, a),
a

with Q3 (s,a) = 0 for all (s, a).

For any value of H, Qf;(s,a) < Q*(s, a) holds for all (s,a). For any 6 € (0,1), if
H > %B=1n(2/6) + 1, then Q*(s,a) < Q}(s,a) + B.§ holds for all (s, a).

Similar approximation has been done explicitly before (Chen et al., 2021a; Chen et al., 2021b;
Cohen et al., 2021)

8/15

Implicit Finite Horizon Approximation

To perform approximation implicitly, we need the following two properties of estimate Q (let
Q: be the value of Q at the beginning of time step t):

® Property 1 (Optimism): with high probability, Q:(s,a) < Q*(s, a) for all (s,a), t > 1.

9/15

Implicit Finite Horizon Approximation

To perform approximation implicitly, we need the following two properties of estimate Q (let
Q: be the value of Q at the beginning of time step t):

® Property 1 (Optimism): with high probability, Q:(s,a) < Q*(s, a) for all (s,a), t > 1.
® Property 2 (Recursion): There exists a “bonus overhead” &y > 0 and an absolute
constant d > 0 such that the following holds with high probability:

-
Z Qh(St, at) Qt(staat)) <&y + (1 +) Z(Vh 1(5t Qt(shat))-‘rv
t=1

T T

(Q*(st,ar) — Qe(se,ar)) < En+ (1 + %) Z(V*(St) — Q:(st,ar))+,
t=1

t=1

where (x)4+ = max{x, 0}.

9/15

Implicit Finite Horizon Approximation

For any § € (0,1), if H > % In(2/9) + 1, then the template ensures (with high probability)
Rk = O (VB,Ck + B, + 6Cx + £p), where Cx = S5y S0k, c(sK, a¥).

10/15

Implicit Finite Horizon Approximation

For any § € (0,1), if H > % In(2/9) + 1, then the template ensures (with high probability)
Rk = O (VB,Ck + B, + 6Cx + £p), where Cx = S5y S0k, c(sK, a¥).

Now if we ensure &y = O (\/ B*SACK) (with appropriate bonus), then Rx = O (B*\/SAK).

No explicit implementation of M is required!

10/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

Update Q(s, a) for logarithmically many times for each (s, a).

11/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

Update Q(s, a) for logarithmically many times for each (s, a).
When updating Q(s, a), we apply the following update rule:

Q(s,a) + max {c(s,a) + Ps,V — b, Q(s,a)},

where P is the empirical transition, b ~ max {7 &:,\/)’ %} (Zhang et al., 2021).

11/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—S§P satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

12/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—SNSP satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

Theorem

SVI-SSP ensures Rk = O(B,v/SAK + B.S?A).

12/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—SNSP satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

Theorem
SVI-SSP ensures Rk = O(B,v/SAK + B.S?A).

| \

¢ Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).

12/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—SNSP satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

| \

Theorem
SVI-SSP ensures Rk = O(B,v/SAK + B.S?A).

¢ Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).
® Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).

12/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—SNSP satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

| \

Theorem
SVI-SSP ensures Rk = O(B,v/SAK + B.S?A).

¢ Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).

® Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).

° LNower time complexity of udeates: SVI-SSP: @(B*SzA/cm;n), EB-SSP:
O(B2S5A/c2.), ULCVL: O(S2AT,K)

min

12/15

Optimal and Efficient Model-based Algorithm: SVI-SSP

SVI—SNSP satisfies Property 1 and Property 2 with d =1 and
én=0 (\/B*SACK + B,S?A + 5CK).

Theorem
SVI-SSP ensures Rk = O(B,v/SAK + B.S?A).

| \

¢ Minimax optimal, matching the result of EB-SSP (Tarbouriech et al., 2021).
® Can be made parameter-free using doubling trick (Tarbouriech et al., 2021).

° LNower time complexity of udeates: SVI-SSP: @(B*SzA/cm;n), EB-SSP:
O(B2S5A/c?.), ULCVI: O(S%AT,.K)

min
Our implicit finite horizon analysis is the key to achieve sparse updates.

12/15

The First Model-free Algorithm: LCB-ADVANTAGE-SSP

Update Q(s, a) for logarithmically many times for each (s, a).

13/15

The First Model-free Algorithm: LCB-ADVANTAGE-SSP

Update Q(s, a) for logarithmically many times for each (s, a).
Inspired by (Zhang et al., 2020), we update Q(s, a) with the following variance reduced
update rule (approximately)

Q(s, a) < max {c(s, a) + %Z \/ref(%Z (— (s)) b, Q(s, a)} ,
i=1 i=1

where m is the number of samples in current stage, and n is the number of samples up to
current stage, and V(s) = min, Q(s, a).

13/15

The First Model-free Algorithm: LCB-ADVANTAGE-SSP

LCB-ADVANTAGE-SSP satisfies Property 1 and Property 2 with d = 3 and

tn =0 (VBSACK + B2,

14/15

The First Model-free Algorithm: LCB-ADVANTAGE-SSP

LCB-ADVANTAGE-SSP satisfies Property 1 and Property 2 with d = 3 and

) 2143 g2
ty=0 (\/—B*SACK + @)

LCB-ADVANTAGE-SSP ensures Rk = O (B*w/SAK + BESZA)

7
min

14/15

The First Model-free Algorithm: LCB-ADVANTAGE-SSP

LCB-ADVANTAGE-SSP satisfies Property 1 and Property 2 with d = 3 and

e~ 2143 g2
ty=0 (\/—B*SACK ¥ @)

LCB-ADVANTAGE-SSP ensures R = O (B,v/SAK + 254).

7
s

® To make it parameter-free, we try logarithmically many different values of parameters
simultaneously, each leading to a different update rule for @ and V"¢,

14/15

Our contribution: A generic template for regret minimization algorithms in SSP. Using this
template, we develop two algorithms:

S: #states, A: #actions, D: SSP-diameter, K: #episodes
T,: expected hitting time of optimal policy, ¢mi,: minimum cost

SVI-SSP LCB-ADVANTAGE-SSP
Regret O (B*\/SAK n 3*52A) O (B*\/SAK n 3352A/c:,in>
Algorithm type Model-based Model-free (the first)

15/15

	Introduction

