FINDING THE STOCHASTIC SHORTEST PATH WITH LOW REGRET: THE ADVERSARIAL COST AND UNKNOWN TRANSITION CASE

Liyu Chen & Haipeng Luo

Liyu Chen October 8, 2021

University of Southern California

SSP with adversarial costs: MDP $M = (S, A, s_0, g, P) + \text{costs} \{c_k\}_{k=1}^{K}$

SSP with adversarial costs: MDP $M = (S, A, s_0, g, P) + \text{costs} \{c_k\}_{k=1}^{K}$ Learning Protocol (for k = 1, ..., K)

1. environment chooses c_k possibly based on learner's algorithm and history;

SSP with adversarial costs: MDP $M = (S, A, s_0, g, P) + \text{costs} \{c_k\}_{k=1}^{K}$ Learning Protocol (for k = 1, ..., K)

- 1. environment chooses c_k possibly based on learner's algorithm and history;
- 2. learner starts in state $s_k^1 = s_0, i \leftarrow 1$;
- 3. learner sequentially takes action a_k^i , observes states s_k^{i+1} , and increases counter $i \leftarrow i + 1$ until $s_k^i = g$;

SSP with adversarial costs: MDP $M = (S, A, s_0, g, P) + \text{costs} \{c_k\}_{k=1}^{K}$ Learning Protocol (for k = 1, ..., K)

- 1. environment chooses c_k possibly based on learner's algorithm and history;
- 2. learner starts in state $s_k^1 = s_0, i \leftarrow 1$;
- 3. learner sequentially takes action a_k^i , observes states s_k^{i+1} , and increases counter $i \leftarrow i + 1$ until $s_k^i = g$;
- 4. learner observes c_k (full information) or $\{c(s_k^i, a_k^i)\}_{i=1}^{l_k}$ (bandit feedback) and suffer cost $\sum_{i=1}^{l_k} c(s_k^i, a_k^i)$.

SSP with adversarial costs: MDP $M = (S, A, s_0, g, P) + \text{costs} \{c_k\}_{k=1}^{K}$ Learning Protocol (for k = 1, ..., K)

- 1. environment chooses c_k possibly based on learner's algorithm and history;
- 2. learner starts in state $s_k^1 = s_0, i \leftarrow 1$;
- 3. learner sequentially takes action a_k^i , observes states s_k^{i+1} , and increases counter $i \leftarrow i + 1$ until $s_k^i = g$;
- 4. learner observes c_k (full information) or $\{c(s_k^i, a_k^i)\}_{i=1}^{l_k}$ (bandit feedback) and suffer cost $\sum_{i=1}^{l_k} c(s_k^i, a_k^i)$.

Objective: minimize regret w.r.t. the **best stationary proper policy** in hindsight $(\pi^* = \operatorname{argmin}_{\pi \in \Pi_{\text{proper}}} \sum_{k=1}^{K} J_k^{\pi^*}(s_0))$

$$R_{K} = \sum_{k=1}^{K} \left(\sum_{i=1}^{I_{k}} c_{k}(s_{k}^{i}, a_{k}^{i}) - J_{k}^{\pi^{\star}}(s_{0}) \right).$$

EXISTING RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 T_{\star} : expected hitting time of optimal policy, c_{\min} : minimum cost

 B_* : upper bound on the expected cost of optimal policy

SSP with stochastic costs (Tarbouriech et al., 2020; Cohen et al., 2020; Cohen et al., 2021; Tarbouriech et al., 2021): $\Theta\left(B_{\star}\sqrt{SAK}\right)$.

EXISTING RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
 T_{*}: expected hitting time of optimal policy, c_{min}: minimum cost
 B_{*}: upper bound on the expected cost of optimal policy

SSP with stochastic costs (Tarbouriech et al., 2020; Cohen et al., 2020; Cohen et al., 2021; Tarbouriech et al., 2021): $\Theta\left(B_{\star}\sqrt{SAK}\right)$.

SSP with adversarial costs:

• (Rosenberg and Mansour, 2020): $\tilde{O}\left(\frac{D}{C_{\min}}\sqrt{K}\right)$ or $\tilde{O}\left(T_{\star}K^{3/4}\right)$ with known transition; $\tilde{O}\left(\frac{DS}{C_{\min}}\sqrt{AK}\right)$ or $\tilde{O}\left(T_{\star}S\sqrt{A}K^{3/4}\right)$ with unknown transition.

EXISTING RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
 T_{*}: expected hitting time of optimal policy, c_{min}: minimum cost
 B_{*}: upper bound on the expected cost of optimal policy

SSP with stochastic costs (Tarbouriech et al., 2020; Cohen et al., 2020; Cohen et al., 2021; Tarbouriech et al., 2021): $\Theta\left(B_{\star}\sqrt{SAK}\right)$.

SSP with adversarial costs:

- (Rosenberg and Mansour, 2020): $\tilde{O}\left(\frac{D}{C_{\min}}\sqrt{K}\right)$ or $\tilde{O}\left(T_{\star}K^{3/4}\right)$ with known transition; $\tilde{O}\left(\frac{DS}{C_{\min}}\sqrt{AK}\right)$ or $\tilde{O}\left(T_{\star}S\sqrt{A}K^{3/4}\right)$ with unknown transition.
- (Chen et al., 2021): With known transition, $\Theta(\sqrt{DT_*K})$ in the full information setting, and $\Theta(\sqrt{DT_*SAK})$ in the bandit feedback setting.

OUR RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 T_{\star} : expected hitting time of optimal policy, c_{\min} : minimum cost

	Full information	Bandit feedback
Adaptive adversary	$\tilde{\mathcal{O}}\left(\sqrt{S^{2}ADT_{\star}K} ight)$	
Stochastic adversary		
Lower Bounds	$\Omega\left(\sqrt{DT_{\star}K} + D\sqrt{SAK}\right)$	$\Omega\left(\sqrt{SADT_{\star}K} + D\sqrt{SAK}\right)$

Our contributions:

1. strictly improve (Rosenberg and Mansour, 2020) in the full information setting;

OUR RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 $\mathit{T}_{\star}:$ expected hitting time of optimal policy, $\mathit{c}_{\min}:$ minimum cost

	Full information	Bandit feedback
Adaptive adversary	$\tilde{\mathcal{O}}\left(\sqrt{S^{2}ADT_{\star}K} ight)$	$\tilde{\mathcal{O}}\left(\sqrt{S^{3}A^{2}DT_{\star}K} ight)$
Stochastic adversary		
Lower Bounds	$\Omega\left(\sqrt{DT_{\star}K} + D\sqrt{SAK}\right)$	$\Omega\left(\sqrt{SADT_{\star}K} + D\sqrt{SAK}\right)$

Our contributions:

- 1. strictly improve (Rosenberg and Mansour, 2020) in the full information setting;
- 2. the first result in the most challenging bandit feedback, unknown transition setting;

OUR RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 $\mathit{T}_{\star}:$ expected hitting time of optimal policy, $\mathit{c}_{\min}:$ minimum cost

	Full information	Bandit feedback
Adaptive adversary	$\tilde{\mathcal{O}}\left(\sqrt{S^{2}ADT_{\star}K} ight)$	$\tilde{\mathcal{O}}\left(\sqrt{S^{3}A^{2}DT_{\star}K} ight)$
Stochastic adversary	$\tilde{\mathcal{O}}\left(\sqrt{DT_{\star}K} + DS\sqrt{AK}\right)$	$\tilde{\mathcal{O}}\left(\sqrt{SADT_{\star}K} + DS\sqrt{AK}\right)$
Lower Bounds	$\Omega\left(\sqrt{DT_{\star}K} + D\sqrt{SAK}\right)$	$\Omega\left(\sqrt{SADT_{\star}K} + D\sqrt{SAK}\right)$

Our contributions:

- 1. strictly improve (Rosenberg and Mansour, 2020) in the full information setting;
- 2. the first result in the most challenging bandit feedback, unknown transition setting;
- 3. achieve near optimal regret under the weaker stochastic adversary.

1. Extend the loop-free reduction of (Chen et al., 2020) to the unknown transition setting.

TECHNIQUES

- 1. Extend the loop-free reduction of (Chen et al., 2020) to the unknown transition setting.
- 2. Introduce a data dependent bound on the transition estimation error, which can be controlled by the skewed occupancy measure introduced in (Chen et al., 2020).

TECHNIQUES

- 1. Extend the loop-free reduction of (Chen et al., 2020) to the unknown transition setting.
- 2. Introduce a data dependent bound on the transition estimation error, which can be controlled by the skewed occupancy measure introduced in (Chen et al., 2020).
- 3. For the bandit feedback setting, we further propose and utilize two optimistic cost estimators inspired by the idea of upper occupancy bounds from (Jin et al., 2020) for loop-free SSP.

TECHNIQUES

- 1. Extend the loop-free reduction of (Chen et al., 2020) to the unknown transition setting.
- 2. Introduce a data dependent bound on the transition estimation error, which can be controlled by the skewed occupancy measure introduced in (Chen et al., 2020).
- 3. For the bandit feedback setting, we further propose and utilize two optimistic cost estimators inspired by the idea of upper occupancy bounds from (Jin et al., 2020) for loop-free SSP.
- 4. For the weaker stochastic adversaries, we augment the loop-free reduction to allow the learner to switch to a fast policy (to reach goal in shortest time) at any time if necessary.

SEE YOU IN THE POSTER SESSION!