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PROBLEM FORMULATION

SSP with adversarial costs: MDP M = (S,A, s0,g,P) + costs {ck}Kk=1

Learning Protocol (for k = 1, . . . , K)

1. environment chooses ck possibly based on learner’s algorithm and history;

2. learner starts in state s1k = s0, i← 1;

3. learner sequentially takes action aik, observes states si+1k , and increases
counter i← i+ 1 until sik = g;

4. learner observes ck (full information) or {c(sik, aik)}
Ik
i=1 (bandit feedback)

and suffer cost
∑Ik

i=1 c(s
i
k, aik).

Objective: minimize regret w.r.t. the best stationary proper policy in
hindsight (π⋆ = argminπ∈Πproper

∑K
k=1 Jπ

⋆

k (s0))

RK =
K∑
k=1

( Ik∑
i=1

ck(sik,aik)− Jπ
⋆

k (s0)
)
.
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EXISTING RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

T⋆: expected hitting time of optimal policy, cmin: minimum cost

B⋆: upper bound on the expected cost of optimal policy

SSP with stochastic costs (Tarbouriech et al., 2020; Cohen et al., 2020;
Cohen et al., 2021; Tarbouriech et al., 2021): Θ

(
B⋆

√
SAK

)
.

SSP with adversarial costs:

∙ (Rosenberg and Mansour, 2020): Õ
(

D
cmin

√
K
)
or Õ

(
T⋆K3/4

)
with

known transition; Õ
(
DS
cmin

√
AK
)
or Õ

(
T⋆S

√
AK3/4

)
with unknown

transition.

∙ (Chen et al., 2021): With known transition, Θ
(√
DT⋆K

)
in the full

information setting, and Θ
(√
DT⋆SAK

)
in the bandit feedback

setting.
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OUR RESULTS

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

T⋆: expected hitting time of optimal policy, cmin: minimum cost

Full information Bandit feedback
Adaptive adversary Õ

(√
S2ADT⋆K

)

Õ
(√

S3A2DT⋆K
)

Stochastic adversary

Õ
(√

DT⋆K+ DS
√
AK
)

Õ
(√

SADT⋆K+ DS
√
AK
)

Lower Bounds Ω
(√

DT⋆K+ D
√
SAK

)
Ω
(√

SADT⋆K+ D
√
SAK

)
Our contributions:

1. strictly improve (Rosenberg and Mansour, 2020) in the full
information setting;

2. the first result in the most challenging bandit feedback, unknown
transition setting;

3. achieve near optimal regret under the weaker stochastic adversary.
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Õ
(√

S3A2DT⋆K
)

Stochastic adversary Õ
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TECHNIQUES

1. Extend the loop-free reduction of (Chen et al., 2020) to the
unknown transition setting.

2. Introduce a data dependent bound on the transition estimation
error, which can be controlled by the skewed occupancy measure
introduced in (Chen et al., 2020).

3. For the bandit feedback setting, we further propose and utilize two
optimistic cost estimators inspired by the idea of upper occupancy
bounds from (Jin et al., 2020) for loop-free SSP.

4. For the weaker stochastic adversaries, we augment the loop-free
reduction to allow the learner to switch to a fast policy (to reach
goal in shortest time) at any time if necessary.
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SEE YOU IN THE POSTER SESSION!
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