Towards Minimax Regret for Stochastic Shortest Path with Adversarial Costs Presenter: Liyu Chen

Liyu Chen Haipeng Luo Chen-Yu Wei

University of Southern California

September 12, 2021

Problem Formulation: Markov Decision Process (MDP)

We assume finite state space S and action space $\mathcal{A} = \{\mathcal{A}_s\}_{s \in S}$.

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.
- Challenges: variable episode length, possibly unbounded cost, etc.

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.
- Challenges: variable episode length, possibly unbounded cost, etc.
- Not well studied yet.

- S: # states, A: # actions, D: SSP-diameter, K: # episodes, T_{\star} : expected hitting time of optimal policy, c_{\min} : minimum cost
- SSP with stochastic cost:
 - UC-SSP (Tarbouriech et al., 2020): $\tilde{O}\left(DS\sqrt{\frac{D}{c_{\min}}AK}\right)$

- S: # states, A: # actions, D: SSP-diameter, K: # episodes, T_* : expected hitting time of optimal policy, c_{min} : minimum cost
- SSP with stochastic cost:
 - UC-SSP (Tarbouriech et al., 2020): $\tilde{O}\left(DS\sqrt{\frac{D}{c_{\min}}AK}\right)$
 - Bernstein-SSP (Cohen et al., 2020): $\tilde{O}\left(DS\sqrt{AK}\right)$

- S: # states, A: # actions, D: SSP-diameter, K: # episodes,
- $\mathcal{T}_{\star}:$ expected hitting time of optimal policy, $\mathit{c}_{\min}:$ minimum cost
- SSP with stochastic cost:
 - UC-SSP (Tarbouriech et al., 2020): $\tilde{O}\left(DS\sqrt{\frac{D}{c_{\min}}}AK\right)$
 - Bernstein-SSP (Cohen et al., 2020): $\tilde{O}(DS\sqrt{AK})$
- SSP with adversarial cost (full information):
 - SSP-O-REPS (Rosenberg and Mansour, 2020): $\tilde{O}\left(\frac{D}{c_{\min}}\sqrt{K}\right)$ or $\tilde{O}\left(\sqrt{DT_{\star}}K^{3/4}\right)$ with known transition

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 T_{\star} : expected hitting time of optimal policy, c_{\min} : minimum cost

	Minimax Regret (this talk) (Rosenberg and Mansour, 2020)		
Full information	$\Theta(\sqrt{DT_{\star}K})$	$\tilde{\mathcal{O}}\left(\frac{D}{c_{\min}}\sqrt{K}\right)$ or $\tilde{\mathcal{O}}\left(\sqrt{DT_{\star}}K^{\frac{3}{4}}\right)$	
Bandit feedback	$\Theta(\sqrt{DT_{\star}SAK})$	N/A	

Our contributions: we develop **efficient minimax optimal** algorithms for both full information and bandit feedback setting with known transition.

Follow-up Work for Unknown Transition

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes

 $\mathcal{T}_{\star}:$ expected hitting time of optimal policy, $\mathit{c}_{\min}:$ minimum cost

	Follow-up	(Rosenberg and Mansour, 2020)	Lower bounds
Full information	$\tilde{\mathcal{O}}\left(\sqrt{S^2ADT_{\star}K}\right)$	$\tilde{\mathcal{O}}\left(rac{DS}{c_{\min}}\sqrt{AK} ight)$ or $\tilde{\mathcal{O}}\left(\sqrt{S^2AT_\star^2}K^{3/4}+D^2\sqrt{K} ight)$	$\Omega(\sqrt{DT_{\star}K} + D\sqrt{SAK})$
Bandit feedback	$\tilde{\mathcal{O}}\left(\sqrt{S^3 A^2 D T_\star K}\right)$	N/A	$\Omega(\sqrt{SADT_{\star}K} + D\sqrt{SAK})$

Paper: https://arxiv.org/abs/2102.05284.

All algorithms are based on Online Mirror Descent (OMD).

Many new ideas are required to achieve desired results.

- A new multi-scale expert algorithm
- A reduction from a general SSP to its loop-free version
- Skewed occupancy measure
- Log-barrier regularizer
- An increasing learning rate schedule
- A negative bias injected to the cost function

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

Learning Protocol

for k = 1, ..., K do environment chooses c_k adaptively (based on learner's algorithm and history)

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

Learning Protocol

```
for k = 1, ..., K do
environment chooses c_k adaptively (based on learner's
algorithm and history)
learner starts in state s_k^1 = s_0, i \leftarrow 1
while s_k^i \neq g do
learner chooses action a_k^i \in \mathcal{A}_{s_k^i}
learner observes states s_k^{i+1} \sim P(\cdot|s_k^i, a_k^i)
i \leftarrow i + 1
end
```


SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

Learning Protocol

end

for $k = 1, \ldots, K$ do environment chooses c_k adaptively (based on learner's algorithm and history) learner starts in state $s_{\nu}^1 = s_0, i \leftarrow 1$ while $s_{\nu}^{i} \neq g$ do learner chooses action $a_k^i \in \mathcal{A}_{s_k^i}$ learner observes states $s^{i+1}_{\scriptscriptstyle L} \sim \stackrel{^{\kappa}}{P}(\cdot|s^i_{\scriptscriptstyle L},a^i_{\scriptscriptstyle L})$ $i \leftarrow i + 1$ end learner observes c_k (full information) or $\{c(s_k^i, a_k^i)\}_{i=1}^{l_k}$ (bandit feedback) and suffer cost $\sum_{i=1}^{l_k} c(s_k^i, a_k^i)$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

Notations:

• Valid state-action pairs $\Gamma = \{(s, a) : s \in S, a \in A_s\}$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

- Valid state-action pairs $\Gamma = \{(s, a) : s \in \mathcal{S}, a \in \mathcal{A}_s\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_s
 - Proper: reaches g with probability 1

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

- Valid state-action pairs $\Gamma = \{(s, a) : s \in \mathcal{S}, a \in \mathcal{A}_s\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_s
 - Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s) = \mathbb{E}[\sum_{i=1}^{I} c(s^{i}, a^{i}) | P, \pi, s^{1} = s]$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

- Valid state-action pairs $\Gamma = \{(s, a) : s \in \mathcal{S}, a \in \mathcal{A}_s\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_s
 - Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s) = \mathbb{E}[\sum_{i=1}^{l} c(s^{i}, a^{i}) | P, \pi, s^{1} = s]$
- Expected hitting time $T^{\pi}(s) = \mathbb{E}[I|P, \pi, s^1 = s]$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

- Valid state-action pairs $\Gamma = \{(s, a) : s \in \mathcal{S}, a \in \mathcal{A}_s\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_s
 - Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s) = \mathbb{E}[\sum_{i=1}^{l} c(s^{i}, a^{i}) | P, \pi, s^{1} = s]$
- Expected hitting time $T^{\pi}(s) = \mathbb{E}[I|P, \pi, s^1 = s]$
- $D = \max_s \min_{\pi \in \Pi_{\text{proper}}} T^{\pi}(s), T_{\star} = T^{\pi^{\star}}(s_0).$

SSP Model: MDP $M = (S, A, s_0, g, P) + \text{cost functions } \{c_k\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma = \{(s, a) : s \in \mathcal{S}, a \in \mathcal{A}_s\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_s
 - Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s) = \mathbb{E}[\sum_{i=1}^{I} c(s^{i}, a^{i}) | P, \pi, s^{1} = s]$
- Expected hitting time $T^{\pi}(s) = \mathbb{E}[I|P, \pi, s^1 = s]$
- $D = \max_s \min_{\pi \in \Pi_{\text{proper}}} T^{\pi}(s), T_{\star} = T^{\pi^{\star}}(s_0).$

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

$$R_{K} = \sum_{k=1}^{K} \left(\sum_{i=1}^{I_{k}} c_{k}(s_{k}^{i}, a_{k}^{i}) - J_{k}^{\pi^{\star}}(s_{0}) \right),$$

where $\pi^{\star} = \operatorname{argmin}_{\pi \in \Pi_{\operatorname{proper}}} \sum_{k=1}^{K} J_{k}^{\pi^{\star}}(s_{0})$

$$q_{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{i=1}^{l}\mathbb{I}\{s^i=s,a^i=a\}
ight| P,\pi,s^1=s_0
ight],$$

which is the expected number of visits to (s, a) when executing π .

$$q_{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{i=1}^{I}\mathbb{I}\{s^i=s,a^i=a\}
ight|P,\pi,s^1=s_0
ight],$$

which is the expected number of visits to (s, a) when executing π .

• One-to-one correspondence: $\pi_q(a|s) \propto q(s,a)$

$$q_{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{i=1}^{I} \mathbb{I}\left\{s^{i}=s, a^{i}=a
ight\}\right| P, \pi, s^{1}=s_{0}
ight],$$

which is the expected number of visits to (s, a) when executing π .

- One-to-one correspondence: $\pi_q(a|s) \propto q(s,a)$
- $J_{k}^{\pi}(s_{0}) = \langle q_{\pi}, c_{k} \rangle, T^{\pi}(s_{0}) = \sum_{(s,a)} q_{\pi}(s, a)$

$$q_{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{i=1}^{I} \mathbb{I}\left\{s^{i}=s, a^{i}=a
ight\}\right| P, \pi, s^{1}=s_{0}
ight],$$

which is the expected number of visits to (s, a) when executing π .

- One-to-one correspondence: $\pi_q(a|s) \propto q(s,a)$
- $J_k^{\pi}(s_0) = \langle q_{\pi}, c_k \rangle, \, T^{\pi}(s_0) = \sum_{(s,a)} q_{\pi}(s,a)$
- $\mathbb{E}[R_{\kappa}] = \mathbb{E}\left[\sum_{k=1}^{\kappa} \langle q_{\pi_k} q_{\pi^{\star}}, c_k \rangle\right]$

$$q_{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{i=1}^{I} \mathbb{I}\{s^i = s, a^i = a\}\right| P, \pi, s^1 = s_0
ight],$$

which is the expected number of visits to (s, a) when executing π .

• One-to-one correspondence: $\pi_q(a|s) \propto q(s,a)$

•
$$J_k^{\pi}(s_0) = \langle q_{\pi}, c_k \rangle, T^{\pi}(s_0) = \sum_{(s,a)} q_{\pi}(s,a)$$

• $\mathbb{E}[R_K] = \mathbb{E}\left[\sum_{k=1}^K \langle q_{\pi_k} - q_{\pi^\star}, c_k \rangle\right]$

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

Define the decision set of occupancy measures:

$$egin{aligned} \Delta(\mathcal{T}) &= \left\{ q \in \mathbb{R}^{\Gamma}_{\geq 0} : \sum_{(s,a) \in \Gamma} q(s,a) \leq \mathcal{T}, \ &\sum_{a \in \mathcal{A}_s} q(s,a) - \sum_{(s',a') \in \Gamma} \mathcal{P}(s|s',a') q(s',a') = \mathbb{I}\{s = s_0\}, \ orall s \in \mathcal{S}
ight\} \end{aligned}$$

T is an upper bound on expected hitting time.

Key challenge: achieve optimal bound without knowing T_{\star} Solution: a new multi-scale expert algorithm as meta learner

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time *T*. **Define:** regularizer $\psi(q) = \frac{1}{\eta} \sum_{(s,a)} q(s,a) \ln q(s,a)$ and $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T \ln(SAT)}{DK}}\right\}$. **Initialization:** $q_1 = \operatorname{argmin}_{q \in \Delta(T)} \psi(q)$. **for** $k = 1, \dots, K$ **do** \mid Execute π_{q_k} , receive c_k , and update $q_{k+1} = \operatorname{argmin}_{q \in \Delta(T)} \langle q, c_k \rangle + D_{\psi}(q, q_k)$. **end**

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time *T*. **Define:** regularizer $\psi(q) = \frac{1}{\eta} \sum_{(s,a)} q(s,a) \ln q(s,a)$ and $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T \ln(SAT)}{DK}}\right\}$. **Initialization:** $q_1 = \operatorname{argmin}_{q \in \Delta(T)} \psi(q)$. **for** $k = 1, \dots, K$ **do** \mid Execute π_{q_k} , receive c_k , and update $q_{k+1} = \operatorname{argmin}_{q \in \Delta(T)} \langle q, c_k \rangle + D_{\psi}(q, q_k)$. **end**

Rosenberg and Mansour (2020) proves $\mathbb{E}[R_{\mathcal{K}}] = \tilde{\mathcal{O}}(T\sqrt{\mathcal{K}})$.

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time *T*. **Define:** regularizer $\psi(q) = \frac{1}{\eta} \sum_{(s,a)} q(s,a) \ln q(s,a)$ and $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T \ln(SAT)}{DK}}\right\}$. **Initialization:** $q_1 = \operatorname{argmin}_{q \in \Delta(T)} \psi(q)$. **for** $k = 1, \dots, K$ **do** | Execute π_{q_k} , receive c_k , and update $q_{k+1} = \operatorname{argmin}_{q \in \Delta(T)} \langle q, c_k \rangle + D_{\psi}(q, q_k)$. **end**

Rosenberg and Mansour (2020) proves $\mathbb{E}[R_{\mathcal{K}}] = \tilde{\mathcal{O}}\left(T\sqrt{\mathcal{K}}\right)$. We improve their analysis by the fact $\sum_{k=1}^{\mathcal{K}} J_k^{\pi^*}(s_0) \leq D\mathcal{K}$:

Theorem

Algorithm 1 ensures $\mathbb{E}[R_{\mathcal{K}}] = \tilde{\mathcal{O}}\left(\sqrt{DT\mathcal{K}}\right)$ as long as $T \geq T_{\star}$.

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time *T*. **Define:** regularizer $\psi(q) = \frac{1}{\eta} \sum_{(s,a)} q(s,a) \ln q(s,a)$ and $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T \ln(SAT)}{DK}}\right\}$. **Initialization:** $q_1 = \operatorname{argmin}_{q \in \Delta(T)} \psi(q)$. **for** k = 1, ..., K **do** | Execute π_{q_k} , receive c_k , and update $q_{k+1} = \operatorname{argmin}_{q \in \Delta(T)} \langle q, c_k \rangle + D_{\psi}(q, q_k)$. **end**

Rosenberg and Mansour (2020) proves $\mathbb{E}[R_K] = \tilde{O}(T\sqrt{K})$. We improve their analysis by the fact $\sum_{k=1}^K J_k^{\pi^*}(s_0) \leq DK$:

Theorem

Algorithm 1 ensures $\mathbb{E}[R_{\mathcal{K}}] = \tilde{\mathcal{O}}\left(\sqrt{DT\mathcal{K}}\right)$ as long as $T \ge T_{\star}$. (Problem: need to know T_{\star})

Question: how to deal with unknown T_* ?

Question: how to deal with unknown T_* ?

Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log_2 K$ SSP-O-REPS instances, where the *j*-th instance sets $T \approx 2^j$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_k(j) = \langle q_k^j, c_k \rangle$.
Question: how to deal with unknown T_* ?

Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log_2 K$ SSP-O-REPS instances, where the *j*-th instance sets $T \approx 2^j$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_k(j) = \langle q_k^j, c_k \rangle$.
 - Issue: losses have different scales, $\ell_k(j) \leq b(j) \approx 2^j$.

Question: how to deal with unknown T_* ?

Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log_2 K$ SSP-O-REPS instances, where the *j*-th instance sets $T \approx 2^j$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_k(j) = \langle q_k^j, c_k \rangle$.
 - Issue: losses have different scales, $\ell_k(j) \leq b(j) \approx 2^j$.
 - Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$\psi(p) = \sum_{j=1}^{N} \frac{1}{\eta_j} p(j) \ln p(j), \qquad p_1(j) \propto \eta_j$$

Question: how to deal with unknown T_* ?

Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log_2 K$ SSP-O-REPS instances, where the *j*-th instance sets $T \approx 2^j$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_k(j) = \langle q_k^j, c_k \rangle$.
 - Issue: losses have different scales, $\ell_k(j) \leq b(j) \approx 2^j$.
 - Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$\psi(oldsymbol{
ho}) = \sum_{j=1}^N rac{1}{\eta_j} oldsymbol{p}(j) \ln oldsymbol{p}(j), \qquad oldsymbol{p}_1(j) \propto \eta_j$$

• However, known multi-scale algorithms only ensure $\tilde{O}\left(b(j^*)\sqrt{K}\right)$ regret, not optimal.

Question: how to deal with unknown T_* ?

Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log_2 K$ SSP-O-REPS instances, where the *j*-th instance sets $T \approx 2^j$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_k(j) = \langle q_k^j, c_k \rangle$.
 - Issue: losses have different scales, $\ell_k(j) \leq b(j) \approx 2^j$.
 - Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$\psi({\pmb{p}}) = \sum_{j=1}^N rac{1}{\eta_j} {\pmb{p}}(j) \ln {\pmb{p}}(j), \qquad {\pmb{p}}_1(j) \propto \eta_j$$

- However, known multi-scale algorithms only ensure $\tilde{O}\left(b(j^{\star})\sqrt{K}\right)$ regret, not optimal.
- **Our solution:** inspired by other works for adaptive regret bound (Steinhardt and Liang, 2014; Wei and Luo, 2018), we change $\ell_k(j)$ to $\ell_k(j) + 4\eta_j \ell_k^2(j)$ (penalizing long horizon policy), which gives $\tilde{O}\left(\sqrt{b(j^*)\mathbb{E}[\sum_{k=1}^{K} \ell_k(j^*)]}\right)$ regret.

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define:
$$\Omega = \{p \in \mathbb{R}_{\geq 0}^{N} : \sum_{j=1}^{N} p(j) = 1\}$$
 and $\psi(p) = \sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j)$.
Initialize: $p_{1} \in \Omega$ such that $p_{1}(j) \propto \eta_{j}$.
Initialize: N instances of SSP-O-REPS, where the j -th instance uses parameter $T = b(j)$.
for $k = 1, ..., K$ do
For each $j \in [N]$, obtain occupancy measure q_{k}^{j} from SSP-O-REPS instance j .
Sample $j_{k} \sim p_{k}$, execute π_{k} induced by $q_{k}^{j_{k}}$, receive c_{k} , and feed c_{k} to all instances.
Compute ℓ_{k} and a_{k} : $\ell_{k}(j) = \langle q_{k}^{j}, c_{k} \rangle, a_{k}(j) = 4\eta_{j}\ell_{k}^{2}(j), \forall j \in [N]$.
Update $p_{k+1} = \operatorname{argmin}_{p \in \Omega} \langle p, \ell_{k} + a_{k} \rangle + D_{\psi}(p, p_{k})$.

end

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define:
$$\Omega = \{p \in \mathbb{R}_{\geq 0}^{N} : \sum_{j=1}^{N} p(j) = 1\}$$
 and $\psi(p) = \sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j)$.
Initialize: $p_{1} \in \Omega$ such that $p_{1}(j) \propto \eta_{j}$.
Initialize: N instances of SSP-O-REPS, where the j -th instance uses parameter $T = b(j)$.
for $k = 1, ..., K$ **do**
For each $j \in [N]$, obtain occupancy measure q_{k}^{j} from SSP-O-REPS instance j .
Sample $j_{k} \sim p_{k}$, execute π_{k} induced by $q_{k}^{j_{k}}$, receive c_{k} , and feed c_{k} to all instances.
Compute ℓ_{k} and a_{k} : $\ell_{k}(j) = \langle q_{k}^{j}, c_{k} \rangle, a_{k}(j) = 4\eta_{j}\ell_{k}^{2}(j), \forall j \in [N]$.
Update $p_{k+1} = \operatorname{argmin}_{p \in \Omega} \langle p, \ell_{k} + a_{k} \rangle + D_{\psi}(p, p_{k})$.

end

Theorem

Algorithm 2 ensures $\mathbb{E}[R_{\mathcal{K}}] = \tilde{\mathcal{O}}(\sqrt{DT_{\star}\mathcal{K}})$ without knowing T_{\star} (which is optimal).

Key challenge: control the variance of learner's cost **Solution:** loop-free reduction + skewed occupancy measure

$$R_{K} = \sum_{k=1}^{K} \langle N_{k} - q_{\pi^{\star}}, c_{k} \rangle = \underbrace{\sum_{k=1}^{K} \langle N_{k} - q_{k}, c_{k} \rangle}_{\text{Deviation}} + \underbrace{\sum_{k=1}^{K} \langle q_{k} - q_{\pi^{\star}}, c_{k} \rangle}_{\text{REG}},$$

where $N_k(s,a) = \sum_{i=1}^{I_k} \mathbb{I}\{s_k^i = s, a_k^i = a\}.$

$$R_{K} = \sum_{k=1}^{K} \langle N_{k} - q_{\pi^{\star}}, c_{k} \rangle = \underbrace{\sum_{k=1}^{K} \langle N_{k} - q_{k}, c_{k} \rangle}_{\text{Deviation}} + \underbrace{\sum_{k=1}^{K} \langle q_{k} - q_{\pi^{\star}}, c_{k} \rangle}_{\text{REG}},$$

where $N_k(s,a) = \sum_{i=1}^{I_k} \mathbb{I}\{s_k^i = s, a_k^i = a\}.$

Issue: there is no good upper bound on $\langle N_k, c_k \rangle$.

$$R_{K} = \sum_{k=1}^{K} \langle N_{k} - q_{\pi^{\star}}, c_{k} \rangle = \underbrace{\sum_{k=1}^{K} \langle N_{k} - q_{k}, c_{k} \rangle}_{\text{Deviation}} + \underbrace{\sum_{k=1}^{K} \langle q_{k} - q_{\pi^{\star}}, c_{k} \rangle}_{\text{REG}},$$

where $N_k(s,a) = \sum_{i=1}^{I_k} \mathbb{I}\{s_k^i = s, a_k^i = a\}.$

Issue: there is no good upper bound on $\langle N_k, c_k \rangle$.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}_k[\langle N_k, c_k \rangle^2] \leq 2 \langle q_{\pi}, J_k^{\pi} \rangle$.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}[\langle N_k, c_k \rangle^2] \leq 2 \langle q_{\pi}, J_k^{\pi} \rangle$.

Observation 1: for the optimal policy π^* :

$$\sum_{k=1}^{K} \left\langle q_{\pi^\star}, J_k^{\pi^\star}
ight
angle = \sum_{s \in \mathcal{S}} q_{\pi^\star}(s) \sum_{k=1}^{K} J_k^{\pi^\star}(s) \leq D K \sum_{s \in \mathcal{S}} q_{\pi^\star}(s) = D T_\star K.$$

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}[\langle N_k, c_k \rangle^2] \leq 2 \langle q_{\pi}, J_k^{\pi} \rangle$.

Observation 1: for the optimal policy π^* :

$$\sum_{k=1}^{K} \left\langle q_{\pi^\star}, J_k^{\pi^\star}
ight
angle = \sum_{s \in \mathcal{S}} q_{\pi^\star}(s) \sum_{k=1}^{K} J_k^{\pi^\star}(s) \leq D \mathcal{K} \sum_{s \in \mathcal{S}} q_{\pi^\star}(s) = D \mathcal{T}_\star \mathcal{K}.$$

It is thus tempting to enforce $\sum_{k=1}^{K} \langle q_{\pi_k}, J_k^{\pi_k} \rangle \leq DT_{\star}K$. But how?

- It depends on all cost functions c_1, \ldots, c_K .
- Non-convex w.r.t. occupancy measure.

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

- State space is of the form $\mathcal{S} \times [H]$.
- Transition from (s, h) to (s', h') is only possible if h' = h + 1 (except transition to the goal state).

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

- State space is of the form $\mathcal{S} \times [H]$.
- Transition from (s, h) to (s', h') is only possible if h' = h + 1 (except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

$$\langle q_{\pi}, J_k^{\pi}
angle = \sum_{(s,a)} \sum_{h=1}^H h \cdot q_{\pi}(s, a, h) c_k(s, a, h) = \left\langle q_{\pi}, \vec{h} \circ c_k \right\rangle,$$

where we define $\vec{h} \circ f(s, a, h) = h \cdot f(s, a, h)$. For simplicity, we write $q_{\pi}((s, h), a)$ as $q_{\pi}(s, a, h)$, and $c_k((s, h), a)$ as $c_k(s, a, h)$.

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

- State space is of the form $\mathcal{S} \times [H]$.
- Transition from (s, h) to (s', h') is only possible if h' = h + 1 (except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

$$\langle q_{\pi}, J_k^{\pi}
angle = \sum_{(s,a)} \sum_{h=1}^H h \cdot q_{\pi}(s, a, h) c_k(s, a, h) = \left\langle q_{\pi}, \vec{h} \circ c_k \right\rangle,$$

where we define $\vec{h} \circ f(s, a, h) = h \cdot f(s, a, h)$. For simplicity, we write $q_{\pi}((s, h), a)$ as $q_{\pi}(s, a, h)$, and $c_k((s, h), a)$ as $c_k(s, a, h)$.

This inspires us to approximate the SSP instance by a loop-free MDP.

Construct M from M: duplicate each state by attaching a time step h for H_1 steps, and then connect all states to some dummy state that lasts for another H_2 steps.

For simplicity, write $q(s, a, h) = q((s, h), a), c(s, a, h) = \tilde{c}((s, h), a)$, and define $H = H_1 + H_2$.

Given $\widetilde{\pi}$ in \widetilde{M} , define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

- 1. follows $\widetilde{\pi}(\cdot|(s,h))$ at state s for time step $h \leq H_1$
- 2. then execute the fast policy π^f until reaching g

Given $\widetilde{\pi}$ in \widetilde{M} , define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

- 1. follows $\widetilde{\pi}(\cdot|(s,h))$ at state s for time step $h \leq H_1$
- 2. then execute the fast policy π^f until reaching g

Lemma

Suppose $H_1 \gtrsim \max_s T^{\pi^*}(s), H_2 \gtrsim D$. Let $\tilde{\pi}_1, \ldots, \tilde{\pi}_K$ be policies for \tilde{M} with occupancy measure q_1, \ldots, q_K . Then the regret of executing $\sigma(\tilde{\pi}_1), \ldots, \sigma(\tilde{\pi}_K)$ in M satisfies for any $\lambda \in (0, 2/H]$, with probability $1 - \delta$,

$$R_{K} \leq \sum_{k=1}^{K} \left\langle \widetilde{\textit{N}}_{k} - q_{\widetilde{\pi}^{\star}}, c_{k}
ight
angle + ilde{\mathcal{O}}\left(1
ight)$$

Given $\widetilde{\pi}$ in \widetilde{M} , define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

- 1. follows $\widetilde{\pi}(\cdot|(s,h))$ at state s for time step $h \leq H_1$
- 2. then execute the fast policy π^f until reaching g

Lemma

Suppose $H_1 \gtrsim \max_s T^{\pi^*}(s), H_2 \gtrsim D$. Let $\tilde{\pi}_1, \ldots, \tilde{\pi}_K$ be policies for \tilde{M} with occupancy measure q_1, \ldots, q_K . Then the regret of executing $\sigma(\tilde{\pi}_1), \ldots, \sigma(\tilde{\pi}_K)$ in M satisfies for any $\lambda \in (0, 2/H]$, with probability $1 - \delta$,

$$R_{K} \leq \sum_{k=1}^{K} \left\langle \widetilde{\textit{N}}_{k} - q_{\widetilde{\pi}^{\star}}, c_{k}
ight
angle + ilde{\mathcal{O}}\left(1
ight)$$

Note: applying standard loop-free algorithms does not solve our problem!

Given $\widetilde{\pi}$ in \widetilde{M} , define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

- 1. follows $\widetilde{\pi}(\cdot|(s,h))$ at state s for time step $h \leq H_1$
- 2. then execute the fast policy π^f until reaching g

Lemma

Suppose $H_1 \gtrsim \max_s T^{\pi^*}(s), H_2 \gtrsim D$. Let $\tilde{\pi}_1, \ldots, \tilde{\pi}_K$ be policies for \tilde{M} with occupancy measure q_1, \ldots, q_K . Then the regret of executing $\sigma(\tilde{\pi}_1), \ldots, \sigma(\tilde{\pi}_K)$ in M satisfies for any $\lambda \in (0, 2/H]$, with probability $1 - \delta$,

$$R_{K} \leq \sum_{k=1}^{K} \left\langle \widetilde{N}_{k} - q_{\widetilde{\pi}^{\star}}, c_{k} \right\rangle + \widetilde{\mathcal{O}}\left(1\right) \leq \underbrace{\sum_{k=1}^{K} \left\langle q_{k} - q_{\widetilde{\pi}^{\star}}, c_{k} \right\rangle}_{\operatorname{Reg}} + \lambda \underbrace{\sum_{k=1}^{K} \left\langle q_{k}, \vec{h} \circ c_{k} \right\rangle}_{\operatorname{Var}} + \frac{2 \ln \left(\frac{2}{\delta}\right)}{\lambda} + \widetilde{\mathcal{O}}\left(1\right) + \underbrace{\mathcal{O}}\left(1\right) + \underbrace{$$

Note: applying standard loop-free algorithms does not solve our problem!

Second Idea: Skewed Occupancy Measure Space

$$R_{\mathcal{K}} \lesssim \sum_{k=1}^{\mathcal{K}} \langle q_k - q_{\widetilde{\pi}^\star}, c_k
angle + \lambda \underbrace{\sum_{k=1}^{\mathcal{K}} \left\langle q_k, ec{h} \circ c_k
ight
angle}_{ ext{VAR}} + rac{1}{\lambda}.$$

Second Idea: Skewed Occupancy Measure Space

$$R_{\mathcal{K}} \lesssim \sum_{k=1}^{\mathcal{K}} \langle q_k - q_{\widetilde{\pi}^\star}, c_k
angle + \lambda \underbrace{\sum_{k=1}^{\mathcal{K}} \left\langle q_k, ec{h} \circ c_k
ight
angle}_{ ext{VAR}} + rac{1}{\lambda}.$$

It is still hard to enforce $VAR \leq DT_{\star}K$. Instead, we have the following observation:

$$egin{aligned} &R_K \lesssim \sum_{k=1}^K \left\langle (q_k + \lambda ec{h} \circ q_k) - (q_{\widetilde{\pi}^\star} + \lambda ec{h} \circ q_{\widetilde{\pi}^\star}), c_k
ight
angle + \lambda \sum_{k=1}^K \left\langle q_{\widetilde{\pi}^\star}, ec{h} \circ c_k
ight
angle + rac{1}{\lambda} \ &\lesssim \sum_{k=1}^K \left\langle \phi_{\pi_k} - \phi_{\widetilde{\pi}^\star}, c_k
ight
angle + \lambda DT_\star K + rac{1}{\lambda}. \end{aligned}$$

Second Idea: Skewed Occupancy Measure Space

$$R_{\mathcal{K}} \lesssim \sum_{k=1}^{\mathcal{K}} \langle q_k - q_{\widetilde{\pi}^{\star}}, c_k
angle + \lambda \underbrace{\sum_{k=1}^{\mathcal{K}} \left\langle q_k, ec{h} \circ c_k
ight
angle}_{ ext{VAR}} + rac{1}{\lambda}.$$

It is still hard to enforce $VAR \leq DT_{\star}K$. Instead, we have the following observation:

$$egin{aligned} &\mathcal{R}_{\mathcal{K}}\lesssim\sum_{k=1}^{\mathcal{K}}\left\langle (q_{k}+\lambdaec{h}\circ q_{k})-(q_{\widetilde{\pi}^{\star}}+\lambdaec{h}\circ q_{\widetilde{\pi}^{\star}}),c_{k}
ight
angle +\lambda\sum_{k=1}^{\mathcal{K}}\left\langle q_{\widetilde{\pi}^{\star}},ec{h}\circ c_{k}
ight
angle +rac{1}{\lambda}\ &\lesssim\sum_{k=1}^{\mathcal{K}}\left\langle \phi_{\pi_{k}}-\phi_{\widetilde{\pi}^{\star}},c_{k}
ight
angle +\lambda D\mathcal{T}_{\star}\mathcal{K}+rac{1}{\lambda}. &(\phi_{\pi}=q_{\pi}+\lambdaec{h}\circ q_{\pi}) \end{aligned}$$

It thus motivates us to perform OMD over a skewed occupancy measure space:

$$\Omega = \left\{ \phi = \mathbf{q} + \lambda \vec{\mathbf{h}} \circ \mathbf{q} : \mathbf{q} \in \widetilde{\Delta}(T_{\star}) \right\}.$$

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters:
$$\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T_{\star}}{DK}}\right\}, \lambda = \sqrt{\frac{\ln(1/\delta)}{DT_{\star}K}}, H_2 = \left\lceil 4D \ln \frac{4K}{\delta} \right\rceil$$

Define: $H = H_1 + H_2$, regularizer $\psi(\phi) = \frac{1}{\eta} \sum_{h=1}^{H} \sum_{(s,a) \in \widetilde{\Gamma}} \phi(s, a, h) \ln \phi(s, a, h)$
Initialization: $\phi_1 = q_1 + \lambda \vec{h} \circ q_1 = \operatorname{argmin}_{\phi \in \Omega} \psi(\phi)$.
for $k = 1, \dots, K$ do
Execute $\sigma(\widetilde{\pi}_k)$ where $\widetilde{\pi}_k$ is such that $\widetilde{\pi}_k(a|(s, h)) \propto q_k(s, a, h)$, and receive c_k .
Update $\phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi \in \Omega} \langle \phi, c_k \rangle + D_{\psi}(\phi, \phi_k)$.
end

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters:
$$\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{T_{\star}}{DK}}\right\}, \lambda = \sqrt{\frac{\ln(1/\delta)}{DT_{\star}K}}, H_2 = \left\lceil 4D \ln \frac{4K}{\delta} \right\rceil$$

Define: $H = H_1 + H_2$, regularizer $\psi(\phi) = \frac{1}{\eta} \sum_{h=1}^{H} \sum_{(s,a) \in \widetilde{\Gamma}} \phi(s, a, h) \ln \phi(s, a, h)$
Initialization: $\phi_1 = q_1 + \lambda \vec{h} \circ q_1 = \operatorname{argmin}_{\phi \in \Omega} \psi(\phi)$.
for $k = 1, \dots, K$ do

$$\left| \begin{array}{c} \operatorname{Execute} \sigma(\widetilde{\pi}_k) \text{ where } \widetilde{\pi}_k \text{ is such that } \widetilde{\pi}_k(a|(s, h)) \propto q_k(s, a, h), \text{ and receive } c_k. \\ \operatorname{Update} \phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi \in \Omega} \langle \phi, c_k \rangle + D_{\psi}(\phi, \phi_k). \end{array} \right|$$
end

Theorem

Algorithm 3 ensures that $R_K = \tilde{O}(\sqrt{DT_*K})$ with high probability.

Open Problem: How to achieve the same without knowing T_* ?

Key challenge: large variance of unbiased cost estimators **Solution:** log-barrier regularizer + skewed occupancy measure

Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is
 ^c_k(s, a) =
 ^{N_k(s,a)c_k(s,a)}/_{q_k(s,a)}.

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is
 ^c_k(s, a) =
 ^{N_k(s,a)c_k(s,a)}/_{q_k(s,a)}.
- With the entropy regularizer, the stability term of OMD is $\sum_{(s,a)} q_k(s,a) \mathbb{E}_k[\hat{c}_k^2(s,a)] = \sum_{(s,a)} \frac{\mathbb{E}_k[N_k^2(s,a)]c_k(s,a)}{q_k(s,a)}$, which could be prohibitively large.

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is
 ^c_k(s, a) =
 ^{N_k(s,a)c_k(s,a)}/_{q_k(s,a)}.
- With the entropy regularizer, the stability term of OMD is $\sum_{(s,a)} q_k(s,a) \mathbb{E}_k[\hat{c}_k^2(s,a)] = \sum_{(s,a)} \frac{\mathbb{E}_k[N_k^2(s,a)]c_k(s,a)}{q_k(s,a)}$, which could be prohibitively large.

We resolve these problems with **Log-barrier** regularizer $\psi(\phi) = -\sum_{(s,a)} \ln(\sum_{h=1}^{H} \phi(s, a, h))$.

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is
 ^c_k(s, a) =
 ^{N_k(s,a)c_k(s,a)}/_{q_k(s,a)}.
- With the entropy regularizer, the stability term of OMD is $\sum_{(s,a)} q_k(s,a) \mathbb{E}_k[\hat{c}_k^2(s,a)] = \sum_{(s,a)} \frac{\mathbb{E}_k[N_k^2(s,a)]c_k(s,a)}{q_k(s,a)}$, which could be prohibitively large.

We resolve these problems with **Log-barrier** regularizer $\psi(\phi) = -\sum_{(s,a)} \ln(\sum_{h=1}^{H} \phi(s, a, h))$.

• It leads to a smaller stability term:

$$\sum_{(s,a)}q_k^2(s,a)\mathbb{E}_k[\widehat{c}_k^2(s,a)] = \sum_{(s,a)}\mathbb{E}_k[N_k^2(s,a)]c_k^2(s,a) \leq \mathbb{E}_k[\langle N_k,c_k\rangle^2].$$

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is
 ^c_k(s, a) =
 ^{N_k(s,a)c_k(s,a)}/_{q_k(s,a)}.
- With the entropy regularizer, the stability term of OMD is $\sum_{(s,a)} q_k(s,a) \mathbb{E}_k[\hat{c}_k^2(s,a)] = \sum_{(s,a)} \frac{\mathbb{E}_k[N_k^2(s,a)]c_k(s,a)}{q_k(s,a)}$, which could be prohibitively large.

We resolve these problems with **Log-barrier** regularizer $\psi(\phi) = -\sum_{(s,a)} \ln(\sum_{h=1}^{H} \phi(s, a, h))$.

• It leads to a smaller stability term:

$$\sum_{(s,a)}q_k^2(s,a)\mathbb{E}_k[\widehat{c}_k^2(s,a)] = \sum_{(s,a)}\mathbb{E}_k[N_k^2(s,a)]c_k^2(s,a) \leq \mathbb{E}_k[\langle N_k,c_k\rangle^2].$$

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer $\psi(\phi) = -\frac{1}{\eta} \sum_{(s,a)\in\widetilde{\Gamma}} \ln \phi(s,a)$ where $\phi(s,a) = \sum_{h=1}^{H} \phi(s,a,h)$ Initialization: $\phi_1 = q_1 + \lambda \vec{h} \circ q_1 = \operatorname{argmin}_{\phi\in\Omega} \psi(\phi)$. for $k = 1, \dots, K$ do Execute $\sigma(\widetilde{\pi}_k)$ where $\widetilde{\pi}_k$ is such that $\widetilde{\pi}_k(a|(s,h)) \propto q_k(s,a,h)$. Construct cost estimator $\widehat{c}_k \in \mathbb{R}_{\geq 0}^{\widetilde{\Gamma}}$ such that $\widehat{c}_k(s,a) = \frac{\widetilde{N}_k(s,a)c_k(s,a)}{q_k(s,a)}$. Update $\phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi\in\Omega} \langle \phi, \widehat{c}_k \rangle + D_{\psi}(\phi, \phi_k)$. end

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer $\psi(\phi) = -\frac{1}{\eta} \sum_{(s,a)\in\widetilde{\Gamma}} \ln \phi(s,a)$ where $\phi(s,a) = \sum_{h=1}^{H} \phi(s,a,h)$ **Initialization:** $\phi_1 = q_1 + \lambda \vec{h} \circ q_1 = \operatorname{argmin}_{\phi\in\Omega} \psi(\phi)$. **for** $k = 1, \dots, K$ **do Execute** $\sigma(\tilde{\pi}_k)$ where $\tilde{\pi}_k$ is such that $\tilde{\pi}_k(a|(s,h)) \propto q_k(s,a,h)$. Construct cost estimator $\hat{c}_k \in \mathbb{R}_{\geq 0}^{\widetilde{\Gamma}}$ such that $\hat{c}_k(s,a) = \frac{\tilde{N}_k(s,a)c_k(s,a)}{q_k(s,a)}$. Update $\phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi\in\Omega} \langle \phi, \hat{c}_k \rangle + D_{\psi}(\phi, \phi_k)$. **end**

Theorem

Algorithm 4 ensures $\mathbb{E}[R_K] = \tilde{O}(\sqrt{DT_\star SAK})$ (which is optimal).

Bandit Feedback, High Probability Bound

Key challenge: large variance of the cost estimators for π^{\star}

Solution: skewed occupancy measure + increasing learning rate + negative bias injected to cost function (positive bias + negative bias)

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?
Question: how to obtain a high probability bound?

• The key is to bound the deviation of π^* : $\sum_{k=1}^{K} \langle q_{\pi^*}, \hat{c}_k - c_k \rangle$.

Question: how to obtain a high probability bound?

- The key is to bound the deviation of π^* : $\sum_{k=1}^{K} \langle q_{\pi^*}, \hat{c}_k c_k \rangle$.
- By $\mathbb{E}_k[\widetilde{N}_k^2(s,a)] \leq \sum_h h \cdot q_k(s,a,h)$ in the loop-free setting:

$$\mathbb{E}_k[\widehat{c}_k^2(s,a)] = \frac{\mathbb{E}_k[\widetilde{N}_k^2(s,a)]c_k^2(s,a)}{q_k^2(s,a)} \le \frac{\sum_h h \cdot q_k(s,a,h)c_k(s,a)}{q_k^2(s,a)} \le \rho_K(s,a)b_k(s,a),$$

where $\rho_K(s,a) = \max_k \frac{1}{q_k(s,a)}$ and $b_k(s,a) = \frac{\sum_h hq_k(s,a,h)c_k(s,a)}{q_k(s,a)}.$

Question: how to obtain a high probability bound?

- The key is to bound the deviation of π^* : $\sum_{k=1}^{K} \langle q_{\pi^*}, \hat{c}_k c_k \rangle$.
- By $\mathbb{E}_k[\widetilde{N}_k^2(s,a)] \leq \sum_h h \cdot q_k(s,a,h)$ in the loop-free setting:

$$\mathbb{E}_k[\widehat{c}_k^2(s,a)] = \frac{\mathbb{E}_k[\widetilde{N}_k^2(s,a)]c_k^2(s,a)}{q_k^2(s,a)} \le \frac{\sum_h h \cdot q_k(s,a,h)c_k(s,a)}{q_k^2(s,a)} \le \rho_K(s,a)b_k(s,a),$$

where $\rho_{\mathcal{K}}(s,a) = \max_k \frac{1}{q_k(s,a)}$ and $b_k(s,a) = \frac{\sum_h hq_k(s,a,h)c_k(s,a)}{q_k(s,a)}$.

$$\sum_{(s,a)} q_{\widetilde{\pi}^{\star}}(s,a) \sqrt{\rho_{K}(s,a) \sum_{k=1}^{K} b_{k}(s,a)} \leq \frac{1}{\eta} \left\langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \right\rangle + \eta \sum_{k=1}^{K} \left\langle q_{\widetilde{\pi}^{\star}}, b_{k} \right\rangle,$$

By Freedman's inequality, the deviation is bounded by

$$\sum_{(\boldsymbol{s},\boldsymbol{a})} q_{\widetilde{\pi}^{\star}}(\boldsymbol{s},\boldsymbol{a}) \sqrt{\rho_{K}(\boldsymbol{s},\boldsymbol{a}) \sum_{k=1}^{K} b_{k}(\boldsymbol{s},\boldsymbol{a})} \leq \frac{1}{\eta} \langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \rangle + \eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_{k} \rangle,$$

 The first term ¹/_η (q_{π*}, ρ_K) appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.

$$\sum_{(s,a)} q_{\widetilde{\pi}^{\star}}(s,a) \sqrt{\rho_{K}(s,a) \sum_{k=1}^{K} b_{k}(s,a)} \leq \frac{1}{\eta} \langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \rangle + \eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_{k} \rangle,$$

- The first term $\frac{1}{\eta} \langle q_{\tilde{\pi}^*}, \rho_K \rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \hat{c}_k by $\hat{c}_k \eta b_k$.

$$\sum_{(\boldsymbol{s},\boldsymbol{a})} q_{\widetilde{\pi}^{\star}}(\boldsymbol{s},\boldsymbol{a}) \sqrt{\rho_{K}(\boldsymbol{s},\boldsymbol{a}) \sum_{k=1}^{K} b_{k}(\boldsymbol{s},\boldsymbol{a})} \leq \frac{1}{\eta} \left\langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \right\rangle + \eta \sum_{k=1}^{K} \left\langle q_{\widetilde{\pi}^{\star}}, b_{k} \right\rangle,$$

- The first term $\frac{1}{\eta} \langle q_{\tilde{\pi}^{\star}}, \rho_{K} \rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \hat{c}_k by $\hat{c}_k \eta b_k$.
 - Gives a negative term $-\eta \sum_{k=1}^{K} \langle q_{\tilde{\pi}^*}, b_k \rangle$. Cancel out the second term.

$$\sum_{(\boldsymbol{s},\boldsymbol{a})} q_{\widetilde{\pi}^{\star}}(\boldsymbol{s},\boldsymbol{a}) \sqrt{\rho_{K}(\boldsymbol{s},\boldsymbol{a}) \sum_{k=1}^{K} b_{k}(\boldsymbol{s},\boldsymbol{a})} \leq \frac{1}{\eta} \langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \rangle + \eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_{k} \rangle,$$

- The first term $\frac{1}{\eta} \langle q_{\tilde{\pi}^{\star}}, \rho_{K} \rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \hat{c}_k by $\hat{c}_k \eta b_k$.
 - Gives a negative term $-\eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_k \rangle$. Cancel out the second term.
 - Incurs a bias $\eta \sum_{k=1}^{K} \langle q_k, b_k \rangle = \eta \sum_{k=1}^{K} \langle q_k, \vec{h} \circ c_k \rangle$. Again handled by the skewed occupancy measure.

$$\sum_{(\boldsymbol{s},\boldsymbol{a})} q_{\widetilde{\pi}^{\star}}(\boldsymbol{s},\boldsymbol{a}) \sqrt{\rho_{K}(\boldsymbol{s},\boldsymbol{a}) \sum_{k=1}^{K} b_{k}(\boldsymbol{s},\boldsymbol{a})} \leq \frac{1}{\eta} \left\langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \right\rangle + \eta \sum_{k=1}^{K} \left\langle q_{\widetilde{\pi}^{\star}}, b_{k} \right\rangle,$$

- The first term ¹/_η (q_{π*}, ρ_K) appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \hat{c}_k by $\hat{c}_k \eta b_k$.
 - Gives a negative term $-\eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_k \rangle$. Cancel out the second term.
 - Incurs a bias $\eta \sum_{k=1}^{K} \langle q_k, b_k \rangle = \eta \sum_{k=1}^{K} \langle q_k, \vec{h} \circ c_k \rangle$. Again handled by the skewed occupancy measure.
- Since c_k is unknown, we use \hat{b}_k instead of b_k with $\hat{b}_k(s, a) = \frac{\sum_h q_k(s, a, h) \hat{c}_k(s, a)}{q_k(s, a)}$.

$$\sum_{(\boldsymbol{s},\boldsymbol{a})} q_{\widetilde{\pi}^{\star}}(\boldsymbol{s},\boldsymbol{a}) \sqrt{\rho_{K}(\boldsymbol{s},\boldsymbol{a}) \sum_{k=1}^{K} b_{k}(\boldsymbol{s},\boldsymbol{a})} \leq \frac{1}{\eta} \langle q_{\widetilde{\pi}^{\star}}, \rho_{K} \rangle + \eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_{k} \rangle,$$

- The first term $\frac{1}{\eta} \langle q_{\tilde{\pi}^{\star}}, \rho_{K} \rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \hat{c}_k by $\hat{c}_k \eta b_k$.
 - Gives a negative term $-\eta \sum_{k=1}^{K} \langle q_{\widetilde{\pi}^{\star}}, b_k \rangle$. Cancel out the second term.
 - Incurs a bias $\eta \sum_{k=1}^{K} \langle q_k, b_k \rangle = \eta \sum_{k=1}^{K} \langle q_k, \vec{h} \circ c_k \rangle$. Again handled by the skewed occupancy measure.
- Since c_k is unknown, we use \hat{b}_k instead of b_k with $\hat{b}_k(s, a) = \frac{\sum_h q_k(s, a, h) \hat{c}_k(s, a)}{q_k(s, a)}$.
- We apply both positive (skewed occupancy measure) and negative bias (increasing learning rate, $-\eta \hat{b}_k$)!

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all
$$(s, a) \in \widetilde{\Gamma}$$
, $\eta_1(s, a) = \eta$, $\rho_1(s, a) = 2T$.
for $k = 1, ..., K$ do
Execute $\sigma(\widetilde{\pi}_k)$ where $\widetilde{\pi}_k$ is such that $\widetilde{\pi}_k(a|(s, h)) \propto q_k(s, a, h)$.
 $\phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi \in \Omega} \left\langle \phi, \widehat{c}_k - \gamma \widehat{b}_k \right\rangle + D_{\psi_k}(\phi, \phi_k)$.
for $\forall (s, a) \in \widetilde{\Gamma}$ do
 $| if \frac{1}{\phi_{k+1}(s, a)} > \rho_k(s, a)$ then $\rho_{k+1}(s, a) = \frac{2}{\phi_{k+1}(s, a)}, \eta_{k+1}(s, a) = \beta \eta_k(s, a)$;
else $\rho_{k+1}(s, a) = \rho_k(s, a), \eta_{k+1}(s, a) = \eta_k(s, a)$;
end

end

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all
$$(s, a) \in \widetilde{\Gamma}$$
, $\eta_1(s, a) = \eta$, $\rho_1(s, a) = 2T$.
for $k = 1, ..., K$ do
Execute $\sigma(\widetilde{\pi}_k)$ where $\widetilde{\pi}_k$ is such that $\widetilde{\pi}_k(a|(s, h)) \propto q_k(s, a, h)$.
 $\phi_{k+1} = q_{k+1} + \lambda \vec{h} \circ q_{k+1} = \operatorname{argmin}_{\phi \in \Omega} \left\langle \phi, \widehat{c}_k - \gamma \widehat{b}_k \right\rangle + D_{\psi_k}(\phi, \phi_k)$.
for $\forall (s, a) \in \widetilde{\Gamma}$ do
 $| \quad \text{if } \frac{1}{\phi_{k+1}(s, a)} > \rho_k(s, a) \text{ then } \rho_{k+1}(s, a) = \frac{2}{\phi_{k+1}(s, a)}, \eta_{k+1}(s, a) = \beta \eta_k(s, a);$
else $\rho_{k+1}(s, a) = \rho_k(s, a), \eta_{k+1}(s, a) = \eta_k(s, a);$
end

end

Theorem

Algorithm 5 ensures $R_K = \tilde{O}\left(\sqrt{DT_*SAK}\right)$ with high probability.

- How to achieve high probability bound without knowing T_{\star} ?
- Minimax optimal algorithms for the unknown transition setting.
 - The bounds in our follow-up work are not optimal yet.

Thank You!

References

- Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions and multiscale online learning. In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 497–514, 2017
- Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-probability data-dependent regret bounds for adversarial bandits and mdps. Advances in Neural Information Processing Systems, 33, 2020a.
- Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially changing costs. arXiv preprint arXiv:2006.11561, 2020
- Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds for stochastic shortest path. In Proceedings of the 37th International Conference on Machine Learning, pages 8210–8219, 2020.
- Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. Noregret exploration in goal-oriented reinforcement learning. In International Conference on Machine Learning, pages 9428–9437. PMLR, 2020.

References

- Jaksch, Thomas, Ronald Ortner, and Peter Auer. "Near-optimal Regret Bounds for Reinforcement Learning." Journal of Machine Learning Research 11.4 (2010).
- Bartlett, P. L. and Tewari, A. Regal: A regularization based algorithm for reinforcement learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 35–42. AUAI Press, 2009.
- Even-Dar, Eyal, Yishay Mansour, and Peter Bartlett. "Learning Rates for Q-learning." Journal of machine learning Research 5.1 (2003).
- Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd international conference on Machine learning, pages 881–888. ACM, 2006.
- Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos. "Minimax regret bounds for reinforcement learning." International Conference on Machine Learning. PMLR, 2017.
- Osband, Ian and Van Roy, Benjamin. On lower bounds for regret in reinforcement learning. stat, 1050:9, 2016a.

- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In Advances in neural information processing systems, pages 4863–4873, 2018.
- Wei, Chen-Yu, and Haipeng Luo. "More adaptive algorithms for adversarial bandits." Conference On Learning Theory. PMLR, 2018.
- Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient algorithm. In International Conference on Machine Learning, pages 1593–1601, 2014.

Backup Slides

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses DK.

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses DK.

- Uniformly sample a good state j^{*} ∈ [N] and fixed throughout the K episodes
- In each episode:
 - $x_{j^*} \sim \text{Bernoulli}(\frac{D}{2T_*})$
 - $x_j \sim \text{Bernoulli}(\frac{\overline{D}}{2T_\star} + \epsilon)$ for any $j \neq j^\star$

(action, probability, cost)

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses DK.

- Uniformly sample a good state j^{*} ∈ [N] and fixed throughout the K episodes
- In each episode:
 - $x_{j^{\star}} \sim \text{Bernoulli}(\frac{D}{2T_{\star}})$
 - $x_j \sim \text{Bernoulli}(\frac{D}{2T_{\star}} + \epsilon)$ for any $j \neq j^{\star}$

Full information: $\Omega(\sqrt{DT_{\star}K})$ Bandit feedback: $\Omega(\sqrt{DT_{\star}SAK})$ (action, probability, cost)

31 / 31

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses DK.

- Uniformly sample a good state j^{*} ∈ [N] and fixed throughout the K episodes
- In each episode:
 - $x_{j^*} \sim \text{Bernoulli}(\frac{D}{2T_*})$
 - $x_j \sim \text{Bernoulli}(\frac{\overline{D}}{2T_{\star}} + \epsilon)$ for any $j \neq j^{\star}$

Full information: $\Omega(\sqrt{DT_{\star}K})$ Bandit feedback: $\Omega(\sqrt{DT_{\star}SAK})$ Stochastic cost (Cohen et al., 2020): $\Omega(D\sqrt{SAK})$ (action, probability, cost)

31 / 31

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses DK.

- Uniformly sample a good state j^{*} ∈ [N] and fixed throughout the K episodes
- In each episode:
 - $x_{j^*} \sim \text{Bernoulli}(\frac{D}{2T_*})$
 - $x_j \sim \text{Bernoulli}(\frac{\overline{D}}{2T_{\star}} + \epsilon)$ for any $j \neq j^{\star}$

Full information: $\Omega(\sqrt{DT_{\star}K})$ Bandit feedback: $\Omega(\sqrt{DT_{\star}SAK})$ Stochastic cost (Cohen et al., 2020): $\Omega(D\sqrt{SAK})$

Our setting is harder due to the larger variance of costs (with T_{\star} dependency).

(action, probability, cost)

