Towards Minimax Regret for Stochastic Shortest Path with

Adversarial Costs

Presenter: Liyu Chen

Liyu Chen Haipeng Luo Chen-Yu Wei
University of Southern California

September 12, 2021

Problem Formulation: Markov Decision Process (MDP)

We assume finite state space \mathcal{S} and action space $\mathcal{A}=\left\{\mathcal{A}_{s}\right\}_{s \in \mathcal{S}}$.

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.
- Challenges: variable episode length, possibly unbounded cost, etc.

Motivation

Many MDP models have been studied:

- Infinite horizon average reward model (Bartlett \& Tewari, 2009; Jaksch et al., 2010)
- Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
- Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

- Games (such as Go)
- Car navigation
- Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

- Episodic MDP with a goal state.
- Challenges: variable episode length, possibly unbounded cost, etc.
- Not well studied yet.

Related Works

S: \# states, A : \# actions, D: SSP-diameter, K : \# episodes, T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

- SSP with stochastic cost:
- UC-SSP (Tarbouriech et al., 2020): $\tilde{\mathcal{O}}\left(D S \sqrt{\frac{D}{c_{\text {min }}} A K}\right)$

Related Works

S: \# states, A : \# actions, D: SSP-diameter, K : \# episodes, T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

- SSP with stochastic cost:
- UC-SSP (Tarbouriech et al., 2020): $\tilde{\mathcal{O}}\left(D S \sqrt{\frac{D}{c_{\text {min }}} A K}\right)$
- Bernstein-SSP (Cohen et al., 2020): $\tilde{\mathcal{O}}(D S \sqrt{A K})$

Related Works

S: \# states, A : \# actions, D: SSP-diameter, K : \# episodes, T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

- SSP with stochastic cost:
- UC-SSP (Tarbouriech et al., 2020): $\tilde{\mathcal{O}}\left(D S \sqrt{\frac{D}{c_{\text {min }}} A K}\right)$
- Bernstein-SSP (Cohen et al., 2020): $\tilde{\mathcal{O}}(D S \sqrt{A K})$
- SSP with adversarial cost (full information):
- SSP-O-REPS (Rosenberg and Mansour, 2020): $\tilde{\mathcal{O}}\left(\frac{D}{c_{\text {min }}} \sqrt{K}\right)$ or $\tilde{\mathcal{O}}\left(\sqrt{D T_{\star}} K^{3 / 4}\right)$ with known transition

Our Results

S: \# of states, A : \# of actions, D: SSP-diameter, K : \# of episodes T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

	Minimax Regret (this talk)	(Rosenberg and Mansour, 2020)
Full information	$\Theta\left(\sqrt{D T_{\star}} K\right)$	$\tilde{\mathcal{O}}\left(\frac{D}{c_{\text {min }}} \sqrt{K}\right)$ or $\tilde{\mathcal{O}}\left(\sqrt{D T_{\star}} K^{\frac{3}{4}}\right)$
Bandit feedback	$\Theta\left(\sqrt{D T_{\star}} S A K\right)$	N / A

Our contributions: we develop efficient minimax optimal algorithms for both full information and bandit feedback setting with known transition.

Follow-up Work for Unknown Transition

S: \# of states, A: \# of actions, D: SSP-diameter, K : \# of episodes T_{\star} : expected hitting time of optimal policy, $c_{\text {min }}$: minimum cost

	Follow-up	(Rosenberg and Mansour, 2020)	Lower bounds
Full information	$\tilde{\mathcal{O}}\left(\sqrt{S^{2} A D T_{\star} K}\right)$	$\tilde{\mathcal{O}}\left(\frac{D S}{c_{\text {min }}} \sqrt{A K}\right)$ or $\tilde{\mathcal{O}}\left(\sqrt{S^{2} A T_{\star}^{2}} K^{3 / 4}+D^{2} \sqrt{K}\right)$	$\Omega\left(\sqrt{D T_{\star} K}+D \sqrt{S A K}\right)$
Bandit feedback	$\tilde{\mathcal{O}}\left(\sqrt{S^{3} A^{2} D T_{\star} K}\right)$	N / A	$\Omega\left(\sqrt{S A D T_{\star} K}+D \sqrt{S A K}\right)$

Paper: https://arxiv.org/abs/2102.05284.

Highlights

All algorithms are based on Online Mirror Descent (OMD).
Many new ideas are required to achieve desired results.

- A new multi-scale expert algorithm
- A reduction from a general SSP to its loop-free version
- Skewed occupancy measure
- Log-barrier regularizer
- An increasing learning rate schedule
- A negative bias injected to the cost function

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Problem Formulation

$$
\text { SSP Model: MDP } M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+\text { cost functions }\left\{c_{k}\right\}_{k=1}^{K}
$$

Learning Protocol

for $k=1, \ldots, K$ do
environment chooses c_{k} adaptively (based on learner's algorithm and history)
end

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Learning Protocol

for $k=1, \ldots, K$ do
environment chooses c_{k} adaptively (based on learner's algorithm and history)
learner starts in state $s_{k}^{1}=s_{0}, i \leftarrow 1$
while $s_{k}^{i} \neq g$ do
learner chooses action $a_{k}^{i} \in \mathcal{A}_{s_{k}^{i}}$
learner observes states $s_{k}^{i+1} \sim P\left(\cdot \mid s_{k}^{i}, a_{k}^{i}\right)$
$i \leftarrow i+1$
end

end

Problem Formulation

SSP Model: $\operatorname{MDP} M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Learning Protocol

```
for }k=1,\ldots,K do
```

environment chooses c_{k} adaptively (based on learner's algorithm and history)
learner starts in state $s_{k}^{1}=s_{0}, i \leftarrow 1$
while $s_{k}^{i} \neq g$ do
learner chooses action $a_{k}^{i} \in \mathcal{A}_{s_{k}^{i}}$ learner observes states $s_{k}^{i+1} \sim P\left(\cdot \mid s_{k}^{i}, a_{k}^{i}\right)$ $i \leftarrow i+1$
end
learner observes c_{k} (full information) or $\left\{c\left(s_{k}^{i}, a_{k}^{i}\right)\right\}_{i=1}^{l_{k}}$ (bandit feedback) and suffer cost $\sum_{i=1}^{l_{k}} c\left(s_{k}^{i}, a_{k}^{i}\right)$

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$
Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_{s}
- Proper: reaches g with probability 1

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_{s}
- Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_{s}
- Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$
- Expected hitting time $T^{\pi}(s)=\mathbb{E}\left[I \mid P, \pi, s^{1}=s\right]$

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_{s}
- Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$
- Expected hitting time $T^{\pi}(s)=\mathbb{E}\left[I \mid P, \pi, s^{1}=s\right]$
- $D=\max _{s} \min _{\pi \in \Pi_{\text {proper }}} T^{\pi}(s), T_{\star}=T^{\pi^{\star}}\left(s_{0}\right)$.

Problem Formulation

SSP Model: MDP $M=\left(\mathcal{S}, \mathcal{A}, s_{0}, g, P\right)+$ cost functions $\left\{c_{k}\right\}_{k=1}^{K}$

Notations:

- Valid state-action pairs $\Gamma=\left\{(s, a): s \in \mathcal{S}, a \in \mathcal{A}_{s}\right\}$
- Policy π : maps $s \in \mathcal{S}$ to distribution over \mathcal{A}_{s}
- Proper: reaches g with probability 1
- Cost-to-go function $J^{\pi}(s)=\mathbb{E}\left[\sum_{i=1}^{l} c\left(s^{i}, a^{i}\right) \mid P, \pi, s^{1}=s\right]$
- Expected hitting time $T^{\pi}(s)=\mathbb{E}\left[I \mid P, \pi, s^{1}=s\right]$
- $D=\max _{s} \min _{\pi \in \Pi_{\text {proper }}} T^{\pi}(s), T_{\star}=T^{\pi^{\star}}\left(s_{0}\right)$.

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

$$
R_{K}=\sum_{k=1}^{K}\left(\sum_{i=1}^{I_{k}} c_{k}\left(s_{k}^{i}, a_{k}^{i}\right)-J_{k}^{\pi^{\star}}\left(s_{0}\right)\right),
$$

where $\pi^{\star}=\operatorname{argmin}_{\pi \in \Pi_{\text {proper }}} \sum_{k=1}^{K} J_{k}^{\pi^{\star}}\left(s_{0}\right)$

Occupancy Measure

A proper policy π induces an occupancy measure $q_{\pi} \in \mathbb{R}_{\geq 0}^{\Gamma}$ with

$$
q_{\pi}(s, a)=\mathbb{E}\left[\sum_{i=1}^{l} \mathbb{I}\left\{s^{i}=s, a^{i}=a\right\} \mid P, \pi, s^{1}=s_{0}\right],
$$

which is the expected number of visits to (s, a) when executing π.

Occupancy Measure

A proper policy π induces an occupancy measure $q_{\pi} \in \mathbb{R}_{\geq 0}^{\Gamma}$ with

$$
q_{\pi}(s, a)=\mathbb{E}\left[\sum_{i=1}^{l} \mathbb{I}\left\{s^{i}=s, a^{i}=a\right\} \mid P, \pi, s^{1}=s_{0}\right]
$$

which is the expected number of visits to (s, a) when executing π.

- One-to-one correspondence: $\pi_{q}(a \mid s) \propto q(s, a)$

Occupancy Measure

A proper policy π induces an occupancy measure $q_{\pi} \in \mathbb{R}_{\geq 0}^{\Gamma}$ with

$$
q_{\pi}(s, a)=\mathbb{E}\left[\sum_{i=1}^{l} \mathbb{I}\left\{s^{i}=s, a^{i}=a\right\} \mid P, \pi, s^{1}=s_{0}\right]
$$

which is the expected number of visits to (s, a) when executing π.

- One-to-one correspondence: $\pi_{q}(a \mid s) \propto q(s, a)$
- $J_{k}^{\pi}\left(s_{0}\right)=\left\langle q_{\pi}, c_{k}\right\rangle, T^{\pi}\left(s_{0}\right)=\sum_{(s, a)} q_{\pi}(s, a)$

Occupancy Measure

A proper policy π induces an occupancy measure $q_{\pi} \in \mathbb{R}_{\geq 0}^{\Gamma}$ with

$$
q_{\pi}(s, a)=\mathbb{E}\left[\sum_{i=1}^{l} \mathbb{I}\left\{s^{i}=s, a^{i}=a\right\} \mid P, \pi, s^{1}=s_{0}\right]
$$

which is the expected number of visits to (s, a) when executing π.

- One-to-one correspondence: $\pi_{q}(a \mid s) \propto q(s, a)$
- $J_{k}^{\pi}\left(s_{0}\right)=\left\langle q_{\pi}, c_{k}\right\rangle, T^{\pi}\left(s_{0}\right)=\sum_{(s, a)} q_{\pi}(s, a)$
- $\mathbb{E}\left[R_{K}\right]=\mathbb{E}\left[\sum_{k=1}^{K}\left\langle q_{\pi_{k}}-q_{\pi^{\star}}, c_{k}\right\rangle\right]$

Occupancy Measure

A proper policy π induces an occupancy measure $q_{\pi} \in \mathbb{R}_{\geq 0}^{\Gamma}$ with

$$
q_{\pi}(s, a)=\mathbb{E}\left[\sum_{i=1}^{l} \mathbb{I}\left\{s^{i}=s, a^{i}=a\right\} \mid P, \pi, s^{1}=s_{0}\right],
$$

which is the expected number of visits to (s, a) when executing π.

- One-to-one correspondence: $\pi_{q}(a \mid s) \propto q(s, a)$
- $J_{k}^{\pi}\left(s_{0}\right)=\left\langle q_{\pi}, c_{k}\right\rangle, T^{\pi}\left(s_{0}\right)=\sum_{(s, a)} q_{\pi}(s, a)$
- $\mathbb{E}\left[R_{K}\right]=\mathbb{E}\left[\sum_{k=1}^{K}\left\langle q_{\pi_{k}}-q_{\pi^{\star}}, c_{k}\right\rangle\right]$

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

Occupancy Measure

Define the decision set of occupancy measures:

$$
\begin{aligned}
\Delta(T) & =\left\{q \in \mathbb{R}_{\geq 0}^{\Gamma}: \sum_{(s, a) \in \Gamma} q(s, a) \leq T\right. \\
& \left.\sum_{a \in \mathcal{A}_{s}} q(s, a)-\sum_{\left(s^{\prime}, a^{\prime}\right) \in \Gamma} P\left(s \mid s^{\prime}, a^{\prime}\right) q\left(s^{\prime}, a^{\prime}\right)=\mathbb{I}\left\{s=s_{0}\right\}, \forall s \in \mathcal{S}\right\}
\end{aligned}
$$

T is an upper bound on expected hitting time.

Full information, Expected Regret
Key challenge: achieve optimal bound without knowing T_{\star}
Solution: a new multi-scale expert algorithm as meta learner

Full Information, Expected Regret

```
Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)
Input: upper bound on expected hitting time \(T\).
Define: regularizer \(\psi(q)=\frac{1}{\eta} \sum_{(s, a)} q(s, a) \ln q(s, a)\) and \(\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T \ln (S A T)}{D K}}\right\}\).
Initialization: \(q_{1}=\operatorname{argmin}_{q \in \Delta(T)} \psi(q)\).
for \(k=1, \ldots, K\) do
    Execute \(\pi_{q_{k}}\), receive \(c_{k}\), and update \(q_{k+1}=\operatorname{argmin}_{q \in \Delta(T)}\left\langle q, c_{k}\right\rangle+D_{\psi}\left(q, q_{k}\right)\).
end
```


Full Information, Expected Regret

```
Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)
Input: upper bound on expected hitting time \(T\).
Define: regularizer \(\psi(q)=\frac{1}{\eta} \sum_{(s, a)} q(s, a) \ln q(s, a)\) and \(\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T \ln (S A T)}{D K}}\right\}\).
Initialization: \(q_{1}=\operatorname{argmin}_{q \in \Delta(T)} \psi(q)\).
for \(k=1, \ldots, K\) do
    Execute \(\pi_{q_{k}}\), receive \(c_{k}\), and update \(q_{k+1}=\operatorname{argmin}_{q \in \Delta(T)}\left\langle q, c_{k}\right\rangle+D_{\psi}\left(q, q_{k}\right)\).
end
```

Rosenberg and Mansour (2020) proves $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}(T \sqrt{K})$.

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.
Define: regularizer $\psi(q)=\frac{1}{\eta} \sum_{(s, a)} q(s, a) \ln q(s, a)$ and $\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T \ln (S A T)}{D K}}\right\}$.
Initialization: $q_{1}=\operatorname{argmin}_{q \in \Delta(T)} \psi(q)$.
for $k=1, \ldots, K$ do
Execute $\pi_{q_{k}}$, receive c_{k}, and update $q_{k+1}=\operatorname{argmin}_{q \in \Delta(T)}\left\langle q, c_{k}\right\rangle+D_{\psi}\left(q, q_{k}\right)$. end

Rosenberg and Mansour (2020) proves $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}(T \sqrt{K})$.
We improve their analysis by the fact $\sum_{k=1}^{K} J_{k}^{\pi^{\star}}\left(s_{0}\right) \leq D K$:

Theorem

Algorithm 1 ensures $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}(\sqrt{D T K})$ as long as $T \geq T_{\star}$.

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.
Define: regularizer $\psi(q)=\frac{1}{\eta} \sum_{(s, a)} q(s, a) \ln q(s, a)$ and $\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T \ln (S A T)}{D K}}\right\}$.
Initialization: $q_{1}=\operatorname{argmin}_{q \in \Delta(T)} \psi(q)$.
for $k=1, \ldots, K$ do
Execute $\pi_{q_{k}}$, receive c_{k}, and update $q_{k+1}=\operatorname{argmin}_{q \in \Delta(T)}\left\langle q, c_{k}\right\rangle+D_{\psi}\left(q, q_{k}\right)$.
end
Rosenberg and Mansour (2020) proves $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}(T \sqrt{K})$.
We improve their analysis by the fact $\sum_{k=1}^{K} J_{k}^{\pi^{\star}}\left(s_{0}\right) \leq D K$:

Theorem

Algorithm 1 ensures $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}(\sqrt{D T K})$ as long as $T \geq T_{\star}$. (Problem: need to know T_{\star})

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log _{2} K$ SSP-O-REPS instances, where the j-th instance sets $T \approx 2^{j}$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle$.

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log _{2} K$ SSP-O-REPS instances, where the j-th instance sets $T \approx 2^{j}$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle$.
- Issue: losses have different scales, $\ell_{k}(j) \leq b(j) \approx 2^{j}$.

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log _{2} K$ SSP-O-REPS instances, where the j-th instance sets $T \approx 2^{j}$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle$.
- Issue: losses have different scales, $\ell_{k}(j) \leq b(j) \approx 2^{j}$.
- Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$
\psi(p)=\sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j), \quad p_{1}(j) \propto \eta_{j}
$$

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log _{2} K$ SSP-O-REPS instances, where the j-th instance sets $T \approx 2^{j}$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle$.
- Issue: losses have different scales, $\ell_{k}(j) \leq b(j) \approx 2^{j}$.
- Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$
\psi(p)=\sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j), \quad p_{1}(j) \propto \eta_{j}
$$

- However, known multi-scale algorithms only ensure $\tilde{\mathcal{O}}\left(b\left(j^{\star}\right) \sqrt{K}\right)$ regret, not optimal.

Full Information, Expected Regret

Question: how to deal with unknown T_{\star} ?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.

- Maintain $N \approx \log _{2} K$ SSP-O-REPS instances, where the j-th instance sets $T \approx 2^{j}$.
- Each instance is an action of the meta-algorithm. Define meta-loss $\ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle$.
- Issue: losses have different scales, $\ell_{k}(j) \leq b(j) \approx 2^{j}$.
- Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

$$
\psi(p)=\sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j), \quad p_{1}(j) \propto \eta_{j}
$$

- However, known multi-scale algorithms only ensure $\tilde{\mathcal{O}}\left(b\left(j^{\star}\right) \sqrt{K}\right)$ regret, not optimal.
- Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang, 2014; Wei and Luo, 2018), we change $\ell_{k}(j)$ to $\ell_{k}(j)+4 \eta_{j} \ell_{k}^{2}(j)$ (penalizing long horizon policy), which gives $\tilde{\mathcal{O}}\left(\sqrt{b\left(j^{\star}\right) \mathbb{E}\left[\sum_{k=1}^{K} \ell_{k}\left(j^{\star}\right)\right]}\right)$ regret.

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: $\Omega=\left\{p \in \mathbb{R}_{\geq 0}^{N}: \sum_{j=1}^{N} p(j)=1\right\}$ and $\psi(p)=\sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j)$.
Initialize: $p_{1} \in \Omega$ such that $p_{1}(j) \propto \eta_{j}$.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter $T=b(j)$.
for $k=1, \ldots, K$ do
For each $j \in[N]$, obtain occupancy measure q_{k}^{j} from SSP-O-REPS instance j.
Sample $j_{k} \sim p_{k}$, execute π_{k} induced by $q_{k}^{j_{k}}$, receive c_{k}, and feed c_{k} to all instances.
Compute ℓ_{k} and $a_{k}: \ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle, a_{k}(j)=4 \eta_{j} \ell_{k}^{2}(j), \forall j \in[N]$.
Update $p_{k+1}=\operatorname{argmin}_{p \in \Omega}\left\langle p, \ell_{k}+a_{k}\right\rangle+D_{\psi}\left(p, p_{k}\right)$.
end

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: $\Omega=\left\{p \in \mathbb{R}_{\geq 0}^{N}: \sum_{j=1}^{N} p(j)=1\right\}$ and $\psi(p)=\sum_{j=1}^{N} \frac{1}{\eta_{j}} p(j) \ln p(j)$.
Initialize: $p_{1} \in \Omega$ such that $p_{1}(j) \propto \eta_{j}$.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter $T=b(j)$.
for $k=1, \ldots, K$ do
For each $j \in[N]$, obtain occupancy measure q_{k}^{j} from SSP-O-REPS instance j.
Sample $j_{k} \sim p_{k}$, execute π_{k} induced by $q_{k}^{j_{k}}$, receive c_{k}, and feed c_{k} to all instances.
Compute ℓ_{k} and $a_{k}: \ell_{k}(j)=\left\langle q_{k}^{j}, c_{k}\right\rangle, a_{k}(j)=4 \eta_{j} \ell_{k}^{2}(j), \forall j \in[N]$.
Update $p_{k+1}=\operatorname{argmin}_{p \in \Omega}\left\langle p, \ell_{k}+a_{k}\right\rangle+D_{\psi}\left(p, p_{k}\right)$.
end

Theorem

Algorithm 2 ensures $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}\left(\sqrt{D T_{\star} K}\right)$ without knowing T_{\star} (which is optimal).

Full Information, High Probability Bound
Key challenge: control the variance of learner's cost
Solution: loop-free reduction + skewed occupancy measure

Full Information, High Probability Bound

$$
R_{K}=\sum_{k=1}^{K}\left\langle N_{k}-q_{\pi^{\star}}, c_{k}\right\rangle=\underbrace{\sum_{k=1}^{K}\left\langle N_{k}-q_{k}, c_{k}\right\rangle}_{\text {Deviation }}+\underbrace{\sum_{k=1}^{K}\left\langle q_{k}-q_{\pi^{\star}}, c_{k}\right\rangle}_{R E G},
$$

where $N_{k}(s, a)=\sum_{i=1}^{I_{k}} \mathbb{I}\left\{s_{k}^{i}=s, a_{k}^{i}=a\right\}$.

Full Information, High Probability Bound

$$
R_{K}=\sum_{k=1}^{K}\left\langle N_{k}-q_{\pi^{\star}}, c_{k}\right\rangle=\underbrace{\sum_{k=1}^{K}\left\langle N_{k}-q_{k}, c_{k}\right\rangle}_{\text {Deviation }}+\underbrace{\sum_{k=1}^{K}\left\langle q_{k}-q_{\pi^{\star}}, c_{k}\right\rangle}_{R E G},
$$

where $N_{k}(s, a)=\sum_{i=1}^{I_{k}} \mathbb{I}\left\{s_{k}^{i}=s, a_{k}^{i}=a\right\}$.
Issue: there is no good upper bound on $\left\langle N_{k}, c_{k}\right\rangle$.

Full Information, High Probability Bound

$$
R_{K}=\sum_{k=1}^{K}\left\langle N_{k}-q_{\pi^{\star}}, c_{k}\right\rangle=\underbrace{\sum_{k=1}^{K}\left\langle N_{k}-q_{k}, c_{k}\right\rangle}_{\text {Deviation }}+\underbrace{\sum_{k=1}^{K}\left\langle q_{k}-q_{\pi^{\star}}, c_{k}\right\rangle}_{R E G},
$$

where $N_{k}(s, a)=\sum_{i=1}^{l_{k}} \mathbb{I}\left\{s_{k}^{i}=s, a_{k}^{i}=a\right\}$.
Issue: there is no good upper bound on $\left\langle N_{k}, c_{k}\right\rangle$.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}_{k}\left[\left\langle N_{k}, c_{k}\right\rangle^{2}\right] \leq 2\left\langle q_{\pi}, J_{k}^{\pi}\right\rangle$.

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}\left[\left\langle N_{k}, c_{k}\right\rangle^{2}\right] \leq 2\left\langle q_{\pi}, J_{k}^{\pi}\right\rangle$.
Observation 1: for the optimal policy π^{\star} :

$$
\sum_{k=1}^{K}\left\langle q_{\pi^{\star}}, J_{k}^{\pi^{\star}}\right\rangle=\sum_{s \in \mathcal{S}} q_{\pi^{\star}}(s) \sum_{k=1}^{K} J_{k}^{\pi^{\star}}(s) \leq D K \sum_{s \in \mathcal{S}} q_{\pi^{\star}}(s)=D T_{\star} K
$$

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then $\mathbb{E}\left[\left\langle N_{k}, c_{k}\right\rangle^{2}\right] \leq 2\left\langle q_{\pi}, J_{k}^{\pi}\right\rangle$.
Observation 1: for the optimal policy π^{\star} :

$$
\sum_{k=1}^{K}\left\langle q_{\pi^{\star}}, J_{k}^{\pi^{\star}}\right\rangle=\sum_{s \in \mathcal{S}} q_{\pi^{\star}}(s) \sum_{k=1}^{K} J_{k}^{\pi^{\star}}(s) \leq D K \sum_{s \in \mathcal{S}} q_{\pi^{\star}}(s)=D T_{\star} K
$$

It is thus tempting to enforce $\sum_{k=1}^{K}\left\langle q_{\pi_{k}}, J_{k}^{\pi_{k}}\right\rangle \leq D T_{\star} K$. But how?

- It depends on all cost functions c_{1}, \ldots, c_{K}.
- Non-convex w.r.t. occupancy measure.

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.
Loop-free layered structure:

- State space is of the form $\mathcal{S} \times[H]$.
- Transition from (s, h) to $\left(s^{\prime}, h^{\prime}\right)$ is only possible if $h^{\prime}=h+1$ (except transition to the goal state).

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.
Loop-free layered structure:

- State space is of the form $\mathcal{S} \times[H]$.
- Transition from (s, h) to $\left(s^{\prime}, h^{\prime}\right)$ is only possible if $h^{\prime}=h+1$ (except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

$$
\left\langle q_{\pi}, J_{k}^{\pi}\right\rangle=\sum_{(s, a)} \sum_{h=1}^{H} h \cdot q_{\pi}(s, a, h) c_{k}(s, a, h)=\left\langle q_{\pi}, \vec{h} \circ c_{k}\right\rangle,
$$

where we define $\vec{h} \circ f(s, a, h)=h \cdot f(s, a, h)$. For simplicity, we write $q_{\pi}((s, h), a)$ as $q_{\pi}(s, a, h)$, and $c_{k}((s, h), a)$ as $c_{k}(s, a, h)$.

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.
Loop-free layered structure:

- State space is of the form $\mathcal{S} \times[H]$.
- Transition from (s, h) to $\left(s^{\prime}, h^{\prime}\right)$ is only possible if $h^{\prime}=h+1$ (except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

$$
\left\langle q_{\pi}, J_{k}^{\pi}\right\rangle=\sum_{(s, a)} \sum_{h=1}^{H} h \cdot q_{\pi}(s, a, h) c_{k}(s, a, h)=\left\langle q_{\pi}, \vec{h} \circ c_{k}\right\rangle,
$$

where we define $\vec{h} \circ f(s, a, h)=h \cdot f(s, a, h)$. For simplicity, we write $q_{\pi}((s, h), a)$ as $q_{\pi}(s, a, h)$, and $c_{k}((s, h), a)$ as $c_{k}(s, a, h)$.

This inspires us to approximate the SSP instance by a loop-free MDP.

First Idea: Loop-free Reduction

Construct \widetilde{M} from M : duplicate each state by attaching a time step h for H_{1} steps, and then connect all states to some dummy state that lasts for another H_{2} steps.

$$
\begin{gathered}
\tilde{c}((s, h), a)=c(s, a) \\
\widetilde{P}\left(\left(s^{\prime}, h+1\right) \mid(s, h), a\right)=P\left(s^{\prime} \mid s, a\right), h \in\left[H_{1}-1\right] \\
\vdots \\
\underbrace{}_{H_{1}} \ldots \ldots
\end{gathered}
$$

For simplicity, write $q(s, a, h)=q((s, h), a), c(s, a, h)=\widetilde{c}((s, h), a)$, and define $H=H_{1}+H_{2}$.

First Idea: Loop-free Reduction

Given $\widetilde{\pi}$ in \widetilde{M}, define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

1. follows $\widetilde{\pi}(\cdot \mid(s, h))$ at state s for time step $h \leq H_{1}$
2. then execute the fast policy π^{f} until reaching g

First Idea: Loop-free Reduction

Given $\widetilde{\pi}$ in \widetilde{M}, define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

1. follows $\widetilde{\pi}(\cdot \mid(s, h))$ at state s for time step $h \leq H_{1}$
2. then execute the fast policy π^{f} until reaching g

Lemma

Suppose $H_{1} \gtrsim \max _{s} T^{\pi^{\star}}(s), H_{2} \gtrsim D$. Let $\widetilde{\pi}_{1}, \ldots, \widetilde{\pi}_{K}$ be policies for \widetilde{M} with occupancy measure q_{1}, \ldots, q_{K}. Then the regret of executing $\sigma\left(\widetilde{\pi}_{1}\right), \ldots, \sigma\left(\widetilde{\pi}_{K}\right)$ in M satisfies for any $\lambda \in(0,2 / H]$, with probability $1-\delta$,
$R_{K} \leq \sum_{k=1}^{K}\left\langle\widetilde{N}_{k}-q_{\tilde{\pi}^{\star}}, c_{k}\right\rangle+\tilde{\mathcal{O}}(1)$

First Idea: Loop-free Reduction

Given $\widetilde{\pi}$ in \widetilde{M}, define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

1. follows $\widetilde{\pi}(\cdot \mid(s, h))$ at state s for time step $h \leq H_{1}$
2. then execute the fast policy π^{f} until reaching g

Lemma

Suppose $H_{1} \gtrsim \max _{s} T^{\pi^{\star}}(s), H_{2} \gtrsim D$. Let $\widetilde{\pi}_{1}, \ldots, \widetilde{\pi}_{K}$ be policies for \widetilde{M} with occupancy measure q_{1}, \ldots, q_{K}. Then the regret of executing $\sigma\left(\widetilde{\pi}_{1}\right), \ldots, \sigma\left(\widetilde{\pi}_{K}\right)$ in M satisfies for any $\lambda \in(0,2 / H]$, with probability $1-\delta$,
$R_{K} \leq \sum_{k=1}^{K}\left\langle\widetilde{N}_{k}-q_{\tilde{\pi}^{\star}}, c_{k}\right\rangle+\tilde{\mathcal{O}}(1)$

Note: applying standard loop-free algorithms does not solve our problem!

First Idea: Loop-free Reduction

Given $\widetilde{\pi}$ in \widetilde{M}, define non-stationary policy $\sigma(\widetilde{\pi})$ in M which

1. follows $\widetilde{\pi}(\cdot \mid(s, h))$ at state s for time step $h \leq H_{1}$
2. then execute the fast policy π^{f} until reaching g

Lemma

Suppose $H_{1} \gtrsim \max _{s} T^{\pi^{\star}}(s), H_{2} \gtrsim D$. Let $\widetilde{\pi}_{1}, \ldots, \widetilde{\pi}_{K}$ be policies for \widetilde{M} with occupancy measure q_{1}, \ldots, q_{K}. Then the regret of executing $\sigma\left(\widetilde{\pi}_{1}\right), \ldots, \sigma\left(\widetilde{\pi}_{K}\right)$ in M satisfies for any $\lambda \in(0,2 / H]$, with probability $1-\delta$,
$R_{K} \leq \sum_{k=1}^{K}\left\langle\widetilde{N}_{k}-q_{\tilde{\pi}^{\star}}, c_{k}\right\rangle+\tilde{\mathcal{O}}(1) \leq \underbrace{\sum_{k=1}^{K}\left\langle q_{k}-q_{\tilde{\pi}^{\star}}, c_{k}\right\rangle}_{\text {REG }}+\lambda \underbrace{\sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle}_{\text {VAR }}+\frac{2 \ln (2 / \delta)}{\lambda}+\tilde{\mathcal{O}}(1)$.
Note: applying standard loop-free algorithms does not solve our problem!

Second Idea: Skewed Occupancy Measure Space

$$
R_{K} \lesssim \sum_{k=1}^{K}\left\langle q_{k}-q_{\tilde{\pi}^{*}}, c_{k}\right\rangle+\lambda \underbrace{\sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle}_{\mathrm{VAR}}+\frac{1}{\lambda}
$$

$\left.R_{k} \sum_{k=1}^{K}\left\langle q_{k}-q_{\pi^{\star}}, c_{k}\right\rangle+\lambda \sum_{\sum_{k=1}^{K}}^{\sum_{i=1}} q_{k}, \vec{h} \circ c_{k}\right\rangle+\frac{1}{\lambda}$

Second Idea: Skewed Occupancy Measure Space

$$
R_{K} \lesssim \sum_{k=1}^{K}\left\langle q_{k}-q_{\tilde{\pi}^{*}}, c_{k}\right\rangle+\lambda \underbrace{\sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle}_{\mathrm{VAR}}+\frac{1}{\lambda}
$$

It is still hard to enforce $\operatorname{VAR} \leq D T_{\star} K$. Instead, we have the following observation:

$$
\begin{aligned}
R_{K} & \lesssim \sum_{k=1}^{K}\left\langle\left(q_{k}+\lambda \vec{h} \circ q_{k}\right)-\left(q_{\tilde{\pi}^{\star}}+\lambda \vec{h} \circ q_{\tilde{\pi}^{\star}}\right), c_{k}\right\rangle+\lambda \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, \vec{h} \circ c_{k}\right\rangle+\frac{1}{\lambda} \\
& \lesssim \sum_{k=1}^{K}\left\langle\phi_{\pi_{k}}-\phi_{\tilde{\pi}^{\star}}, c_{k}\right\rangle+\lambda D T_{\star} K+\frac{1}{\lambda} .
\end{aligned} \quad\left(\phi_{\pi}=q_{\pi}+\lambda \vec{h} \circ q_{\pi}\right)
$$

Second Idea: Skewed Occupancy Measure Space

$$
R_{K} \lesssim \sum_{k=1}^{K}\left\langle q_{k}-q_{\tilde{\pi}^{*}}, c_{k}\right\rangle+\lambda \underbrace{\sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle}_{\mathrm{VAR}}+\frac{1}{\lambda}
$$

It is still hard to enforce $\operatorname{VAR} \leq D T_{\star} K$. Instead, we have the following observation:

$$
\begin{aligned}
R_{K} & \lesssim \sum_{k=1}^{K}\left\langle\left(q_{k}+\lambda \vec{h} \circ q_{k}\right)-\left(q_{\tilde{\pi}^{\star}}+\lambda \vec{h} \circ q_{\tilde{\pi}^{\star}}\right), c_{k}\right\rangle+\lambda \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, \vec{h} \circ c_{k}\right\rangle+\frac{1}{\lambda} \\
& \lesssim \sum_{k=1}^{K}\left\langle\phi_{\pi_{k}}-\phi_{\tilde{\pi}^{\star}}, c_{k}\right\rangle+\lambda D T_{\star} K+\frac{1}{\lambda} .
\end{aligned} \quad\left(\phi_{\pi}=q_{\pi}+\lambda \vec{h} \circ q_{\pi}\right)
$$

It thus motivates us to perform OMD over a skewed occupancy measure space:

$$
\Omega=\left\{\phi=q+\lambda \vec{h} \circ q: q \in \widetilde{\Delta}\left(T_{\star}\right)\right\}
$$

Full Information, High Probability Bound

```
Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure
Parameters: \(\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T_{\star}}{D K}}\right\}, \lambda=\sqrt{\frac{\ln (1 / \delta)}{D T_{\star} K}}, H_{2}=\left\lceil 4 D \ln \frac{4 K}{\delta}\right\rceil\)
Define: \(H=H_{1}+H_{2}\), regularizer \(\psi(\phi)=\frac{1}{\eta} \sum_{h=1}^{H} \sum_{(s, a) \in \tilde{\Gamma}} \phi(s, a, h) \ln \phi(s, a, h)\)
Initialization: \(\phi_{1}=q_{1}+\lambda \vec{h} \circ q_{1}=\operatorname{argmin}_{\phi \in \Omega} \psi(\phi)\).
for \(k=1, \ldots, K\) do
    Execute \(\sigma\left(\widetilde{\pi}_{k}\right)\) where \(\widetilde{\pi}_{k}\) is such that \(\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)\), and receive \(c_{k}\).
    Update \(\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, c_{k}\right\rangle+D_{\psi}\left(\phi, \phi_{k}\right)\).
end
```


Full Information, High Probability Bound

```
Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure
Parameters: \(\eta=\min \left\{\frac{1}{2}, \sqrt{\frac{T_{\star}}{D K}}\right\}, \lambda=\sqrt{\frac{\ln (1 / \delta)}{D T_{\star} K}}, H_{2}=\left\lceil 4 D \ln \frac{4 K}{\delta}\right\rceil\)
Define: \(H=H_{1}+H_{2}\), regularizer \(\psi(\phi)=\frac{1}{\eta} \sum_{h=1}^{H} \sum_{(s, a) \in \tilde{\Gamma}} \phi(s, a, h) \ln \phi(s, a, h)\)
Initialization: \(\phi_{1}=q_{1}+\lambda \vec{h} \circ q_{1}=\operatorname{argmin}_{\phi \in \Omega} \psi(\phi)\).
for \(k=1, \ldots, K\) do
    Execute \(\sigma\left(\widetilde{\pi}_{k}\right)\) where \(\widetilde{\pi}_{k}\) is such that \(\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)\), and receive \(c_{k}\).
    Update \(\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, c_{k}\right\rangle+D_{\psi}\left(\phi, \phi_{k}\right)\).
end
```


Theorem

Algorithm 3 ensures that $R_{K}=\tilde{\mathcal{O}}\left(\sqrt{D T_{\star} K}\right)$ with high probability.
Open Problem: How to achieve the same without knowing T_{\star} ?

Bandit Feedback, Expected Bound

Key challenge: large variance of unbiased cost estimators
Solution: log-barrier regularizer + skewed occupancy measure

Bandit Feedback, Expected Bound

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is $\widehat{c}_{k}(s, a)=\frac{N_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$.

Bandit Feedback, Expected Bound

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is $\widehat{c}_{k}(s, a)=\frac{N_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$.
- With the entropy regularizer, the stability term of OMD is
$\sum_{(s, a)} q_{k}(s, a) \mathbb{E}_{k}\left[\widehat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \frac{\mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}(s, a)}{q_{k}(s, a)}$, which could be prohibitively large.

Bandit Feedback, Expected Bound

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is $\widehat{c}_{k}(s, a)=\frac{N_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$.
- With the entropy regularizer, the stability term of OMD is
$\sum_{(s, a)} q_{k}(s, a) \mathbb{E}_{k}\left[\widehat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \frac{\mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}(s, a)}{q_{k}(s, a)}$, which could be prohibitively large.
We resolve these problems with Log-barrier regularizer $\psi(\phi)=-\sum_{(s, a)} \ln \left(\sum_{h=1}^{H} \phi(s, a, h)\right)$.

Bandit Feedback, Expected Bound

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is $\widehat{c}_{k}(s, a)=\frac{N_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$.
- With the entropy regularizer, the stability term of OMD is
$\sum_{(s, a)} q_{k}(s, a) \mathbb{E}_{k}\left[\widehat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \frac{\mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}(s, a)}{q_{k}(s, a)}$, which could be prohibitively large.
We resolve these problems with Log-barrier regularizer $\psi(\phi)=-\sum_{(s, a)} \ln \left(\sum_{h=1}^{H} \phi(s, a, h)\right)$.
- It leads to a smaller stability term:

$$
\sum_{(s, a)} q_{k}^{2}(s, a) \mathbb{E}_{k}\left[\hat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}^{2}(s, a) \leq \mathbb{E}_{k}\left[\left\langle N_{k}, c_{k}\right\rangle^{2}\right]
$$

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

Bandit Feedback, Expected Bound

- Standard technique: construct an importance-weighted unbiased cost estimator. The natural estimator is $\widehat{c}_{k}(s, a)=\frac{N_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$.
- With the entropy regularizer, the stability term of OMD is
$\sum_{(s, a)} q_{k}(s, a) \mathbb{E}_{k}\left[\widehat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \frac{\mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}(s, a)}{q_{k}(s, a)}$, which could be prohibitively large.
We resolve these problems with Log-barrier regularizer $\psi(\phi)=-\sum_{(s, a)} \ln \left(\sum_{h=1}^{H} \phi(s, a, h)\right)$.
- It leads to a smaller stability term:

$$
\sum_{(s, a)} q_{k}^{2}(s, a) \mathbb{E}_{k}\left[\hat{c}_{k}^{2}(s, a)\right]=\sum_{(s, a)} \mathbb{E}_{k}\left[N_{k}^{2}(s, a)\right] c_{k}^{2}(s, a) \leq \mathbb{E}_{k}\left[\left\langle N_{k}, c_{k}\right\rangle^{2}\right]
$$

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

- Summing over H inside to avoid H dependency (leveraging the fact $c(s, a, h)=c(s, a)$).

Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer $\psi(\phi)=-\frac{1}{\eta} \sum_{(s, a) \in \tilde{\Gamma}} \ln \phi(s, a)$ where $\phi(s, a)=\sum_{h=1}^{H} \phi(s, a, h)$
Initialization: $\phi_{1}=q_{1}+\lambda \vec{h} \circ q_{1}=\operatorname{argmin}_{\phi \in \Omega} \psi(\phi)$.
for $k=1, \ldots, K$ do
Execute $\sigma\left(\widetilde{\pi}_{k}\right)$ where $\widetilde{\pi}_{k}$ is such that $\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)$.
Construct cost estimator $\widehat{c}_{k} \in \mathbb{R}_{\geq 0}^{\widetilde{\Gamma}_{0}}$ such that $\widehat{c}_{k}(s, a)=\frac{\widetilde{N}_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}$. Update $\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, \widehat{c}_{k}\right\rangle+D_{\psi}\left(\phi, \phi_{k}\right)$.
end

Bandit Feedback, Expected Bound

```
Algorithm 4 Log-barrier Policy Search for SSP
Define: regularizer \(\psi(\phi)=-\frac{1}{\eta} \sum_{(s, a) \in \tilde{\Gamma}} \ln \phi(s, a)\) where \(\phi(s, a)=\sum_{h=1}^{H} \phi(s, a, h)\)
Initialization: \(\phi_{1}=q_{1}+\lambda \vec{h} \circ q_{1}=\operatorname{argmin}_{\phi \in \Omega} \psi(\phi)\).
for \(k=1, \ldots, K\) do
    Execute \(\sigma\left(\widetilde{\pi}_{k}\right)\) where \(\widetilde{\pi}_{k}\) is such that \(\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)\).
    Construct cost estimator \(\widehat{c}_{k} \in \mathbb{R}_{\geq 0}^{\tilde{\Gamma}_{0}}\) such that \(\widehat{c}_{k}(s, a)=\frac{\widetilde{N}_{k}(s, a) c_{k}(s, a)}{q_{k}(s, a)}\).
    Update \(\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, \widehat{c}_{k}\right\rangle+D_{\psi}\left(\phi, \phi_{k}\right)\).
end
```


Theorem

Algorithm 4 ensures $\mathbb{E}\left[R_{K}\right]=\tilde{\mathcal{O}}\left(\sqrt{D T_{\star} S A K}\right)$ (which is optimal).

Outline

Bandit Feedback, High Probability Bound

Key challenge: large variance of the cost estimators for π^{\star}
Solution: skewed occupancy measure + increasing learning rate + negative bias injected to cost function (positive bias + negative bias)

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

- The key is to bound the deviation of $\pi^{\star}: \sum_{k=1}^{K}\left\langle q_{\pi^{\star}}, \widehat{c}_{k}-c_{k}\right\rangle$.

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

- The key is to bound the deviation of $\pi^{\star}: \sum_{k=1}^{K}\left\langle q_{\pi^{\star}}, \widehat{c}_{k}-c_{k}\right\rangle$.
- By $\mathbb{E}_{k}\left[\widetilde{N}_{k}^{2}(s, a)\right] \leq \sum_{h} h \cdot q_{k}(s, a, h)$ in the loop-free setting:

$$
\mathbb{E}_{k}\left[\hat{c}_{k}^{2}(s, a)\right]=\frac{\mathbb{E}_{k}\left[\widetilde{N}_{k}^{2}(s, a)\right] c_{k}^{2}(s, a)}{q_{k}^{2}(s, a)} \leq \frac{\sum_{h} h \cdot q_{k}(s, a, h) c_{k}(s, a)}{q_{k}^{2}(s, a)} \leq \rho_{K}(s, a) b_{k}(s, a),
$$

where $\rho_{K}(s, a)=\max _{k} \frac{1}{q_{k}(s, a)}$ and $b_{k}(s, a)=\frac{\sum_{h} h q_{k}(s, a, h) c_{k}(s, a)}{q_{k}(s, a)}$.

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

- The key is to bound the deviation of $\pi^{\star}: \sum_{k=1}^{K}\left\langle q_{\pi^{\star}}, \widehat{c}_{k}-c_{k}\right\rangle$.
- By $\mathbb{E}_{k}\left[\widetilde{N}_{k}^{2}(s, a)\right] \leq \sum_{h} h \cdot q_{k}(s, a, h)$ in the loop-free setting:

$$
\mathbb{E}_{k}\left[\widehat{c}_{k}^{2}(s, a)\right]=\frac{\mathbb{E}_{k}\left[\widetilde{N}_{k}^{2}(s, a)\right] c_{k}^{2}(s, a)}{q_{k}^{2}(s, a)} \leq \frac{\sum_{h} h \cdot q_{k}(s, a, h) c_{k}(s, a)}{q_{k}^{2}(s, a)} \leq \rho_{K}(s, a) b_{k}(s, a),
$$

where $\rho_{K}(s, a)=\max _{k} \frac{1}{q_{k}(s, a)}$ and $b_{k}(s, a)=\frac{\sum_{h} h q_{k}(s, a, h) c_{k}(s, a)}{q_{k}(s, a)}$.

- By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \widehat{c}_{k} by $\widehat{c}_{k}-\eta b_{k}$.

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \widehat{c}_{k} by $\widehat{c}_{k}-\eta b_{k}$.
- Gives a negative term $-\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle$. Cancel out the second term.

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \widehat{c}_{k} by $\widehat{c}_{k}-\eta b_{k}$.
- Gives a negative term $-\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle$. Cancel out the second term.
- Incurs a bias $\eta \sum_{k=1}^{K}\left\langle q_{k}, b_{k}\right\rangle=\eta \sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle$. Again handled by the skewed occupancy measure.

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\tilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle,
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \widehat{c}_{k} by $\widehat{c}_{k}-\eta b_{k}$.
- Gives a negative term $-\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle$. Cancel out the second term.
- Incurs a bias $\eta \sum_{k=1}^{K}\left\langle q_{k}, b_{k}\right\rangle=\eta \sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle$. Again handled by the skewed occupancy measure.
- Since c_{k} is unknown, we use \widehat{b}_{k} instead of b_{k} with $\widehat{b}_{k}(s, a)=\frac{\sum_{h} q_{k}(s, a, h) \widehat{c}_{k}(s, a)}{q_{k}(s, a)}$.

Bandit Feedback, High Probability Bound

By Freedman's inequality, the deviation is bounded by

$$
\sum_{(s, a)} q_{\widetilde{\pi}^{\star}}(s, a) \sqrt{\rho_{K}(s, a) \sum_{k=1}^{K} b_{k}(s, a)} \leq \frac{1}{\eta}\left\langle q_{\widetilde{\pi}^{\star}}, \rho_{K}\right\rangle+\eta \sum_{k=1}^{K}\left\langle q_{\widetilde{\pi}^{\star}}, b_{k}\right\rangle
$$

- The first term $\frac{1}{\eta}\left\langle q_{\tilde{\pi}^{\star}}, \rho_{K}\right\rangle$ appears in (Lee et al., 2020a) already and can be handled by an increasing learning rate schedule.
- To handle the second term, we inject a negative bias: replacing \widehat{c}_{k} by $\widehat{c}_{k}-\eta b_{k}$.
- Gives a negative term $-\eta \sum_{k=1}^{K}\left\langle q_{\tilde{\pi}^{\star}}, b_{k}\right\rangle$. Cancel out the second term.
- Incurs a bias $\eta \sum_{k=1}^{K}\left\langle q_{k}, b_{k}\right\rangle=\eta \sum_{k=1}^{K}\left\langle q_{k}, \vec{h} \circ c_{k}\right\rangle$. Again handled by the skewed occupancy measure.
- Since c_{k} is unknown, we use \widehat{b}_{k} instead of b_{k} with $\widehat{b}_{k}(s, a)=\frac{\sum_{h} q_{k}(s, a, h) \widehat{c}_{k}(s, a)}{q_{k}(s, a)}$.
- We apply both positive (skewed occupancy measure) and negative bias (increasing learning rate, $-\eta \widehat{b}_{k}$)!

Bandit Feedback, High Probability Bound

```
Algorithm 5 Log-barrier Policy Search for SSP (High Probability)
Initialization: for all \((s, a) \in \widetilde{\Gamma}, \eta_{1}(s, a)=\eta, \rho_{1}(s, a)=2 T\).
for \(k=1, \ldots, K\) do
    Execute \(\sigma\left(\widetilde{\pi}_{k}\right)\) where \(\widetilde{\pi}_{k}\) is such that \(\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)\).
    \(\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, \widehat{c}_{k}-\gamma \widehat{b}_{k}\right\rangle+D_{\psi_{k}}\left(\phi, \phi_{k}\right)\).
    for \(\forall(s, a) \in \tilde{\Gamma}\) do
        if \(\frac{1}{\phi_{k+1}(s, a)}>\rho_{k}(s, a)\) then \(\rho_{k+1}(s, a)=\frac{2}{\phi_{k+1}(s, a)}, \eta_{k+1}(s, a)=\beta \eta_{k}(s, a)\);
        else \(\rho_{k+1}(s, a)=\rho_{k}(s, a), \eta_{k+1}(s, a)=\eta_{k}(s, a) ;\)
    end
end
```


Bandit Feedback, High Probability Bound

```
Algorithm 5 Log-barrier Policy Search for SSP (High Probability)
Initialization: for all \((s, a) \in \widetilde{\Gamma}, \eta_{1}(s, a)=\eta, \rho_{1}(s, a)=2 T\).
for \(k=1, \ldots, K\) do
    Execute \(\sigma\left(\widetilde{\pi}_{k}\right)\) where \(\widetilde{\pi}_{k}\) is such that \(\widetilde{\pi}_{k}(a \mid(s, h)) \propto q_{k}(s, a, h)\).
    \(\phi_{k+1}=q_{k+1}+\lambda \vec{h} \circ q_{k+1}=\operatorname{argmin}_{\phi \in \Omega}\left\langle\phi, \widehat{c}_{k}-\gamma \widehat{b}_{k}\right\rangle+D_{\psi_{k}}\left(\phi, \phi_{k}\right)\).
    for \(\forall(s, a) \in \tilde{\Gamma}\) do
        if \(\frac{1}{\phi_{k+1}(s, a)}>\rho_{k}(s, a)\) then \(\rho_{k+1}(s, a)=\frac{2}{\phi_{k+1}(s, a)}, \eta_{k+1}(s, a)=\beta \eta_{k}(s, a)\);
        else \(\rho_{k+1}(s, a)=\rho_{k}(s, a), \eta_{k+1}(s, a)=\eta_{k}(s, a)\);
    end
end
```


Theorem

Algorithm 5 ensures $R_{K}=\tilde{\mathcal{O}}\left(\sqrt{D T_{\star} S A K}\right)$ with high probability.

Open Problems

- How to achieve high probability bound without knowing T_{\star} ?
- Minimax optimal algorithms for the unknown transition setting.
- The bounds in our follow-up work are not optimal yet.

Thank You!

References

- Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions and multiscale online learning. In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 497-514, 2017
- Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-probability data-dependent regret bounds for adversarial bandits and mdps. Advances in Neural Information Processing Systems, 33, 2020a.
- Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially changing costs. arXiv preprint arXiv:2006.11561, 2020
- Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds for stochastic shortest path. In Proceedings of the 37th International Conference on Machine Learning, pages 8210-8219, 2020.
- Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. Noregret exploration in goal-oriented reinforcement learning. In International Conference on Machine Learning, pages 9428-9437. PMLR, 2020.

References

- Jaksch, Thomas, Ronald Ortner, and Peter Auer. "Near-optimal Regret Bounds for Reinforcement Learning." Journal of Machine Learning Research 11.4 (2010).
- Bartlett, P. L. and Tewari, A. Regal: A regularization based algorithm for reinforcement learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 35-42. AUAI Press, 2009.
- Even-Dar, Eyal, Yishay Mansour, and Peter Bartlett. "Learning Rates for Q-learning." Journal of machine learning Research 5.1 (2003).
- Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd international conference on Machine learning, pages 881-888. ACM, 2006.
- Azar, Mohammad Gheshlaghi, lan Osband, and Rémi Munos. "Minimax regret bounds for reinforcement learning." International Conference on Machine Learning. PMLR, 2017.
- Osband, Ian and Van Roy, Benjamin. On lower bounds for regret in reinforcement learning. stat, 1050:9, 2016a.

References

- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In Advances in neural information processing systems, pages 4863-4873, 2018.
- Wei, Chen-Yu, and Haipeng Luo. "More adaptive algorithms for adversarial bandits." Conference On Learning Theory. PMLR, 2018.
- Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient algorithm. In International Conference on Machine Learning, pages 1593-1601, 2014.

Backup Slides

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses $D K$.

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses $D K$.

- Uniformly sample a good state $j^{\star} \in[N]$ and fixed throughout the K episodes
- In each episode:
- $x_{j^{\star}} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}\right)$
- $x_{j} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}+\epsilon\right)$ for any $j \neq j^{\star}$

(action, probability, cost)

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses $D K$.

- Uniformly sample a good state $j^{\star} \in[N]$ and fixed throughout the K episodes
- In each episode:
- $x_{j^{\star}} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}\right)$
- $x_{j} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}+\epsilon\right)$ for any $j \neq j^{\star}$

Full information: $\Omega\left(\sqrt{D T_{\star} K}\right)$
Bandit feedback: $\Omega\left(\sqrt{D T_{\star} S A K}\right)$

(action, probability, cost)

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses $D K$.

- Uniformly sample a good state $j^{\star} \in[N]$ and fixed throughout the K episodes
- In each episode:
- $x_{j \star} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}\right)$
- $x_{j} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}+\epsilon\right)$ for any $j \neq j^{\star}$

Full information: $\Omega\left(\sqrt{D T_{\star} K}\right)$
Bandit feedback: $\Omega\left(\sqrt{D T_{\star} S A K}\right)$
Stochastic cost (Cohen et al., 2020): $\Omega(D \sqrt{\text { SAK }})$

(action, probability, cost)

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T_{\star} and total losses $D K$.

- Uniformly sample a good state $j^{\star} \in[N]$ and fixed throughout the K episodes
- In each episode:
- $x_{j \star} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}\right)$
- $x_{j} \sim \operatorname{Bernoulli}\left(\frac{D}{2 T_{\star}}+\epsilon\right)$ for any $j \neq j^{\star}$

Full information: $\Omega\left(\sqrt{D T_{\star} K}\right)$
Bandit feedback: $\Omega\left(\sqrt{D T_{\star} S A K}\right)$
Stochastic cost (Cohen et al., 2020): $\Omega(D \sqrt{S A K})$
Our setting is harder due to the larger variance of costs (with T_{\star} dependency).

(action, probability, cost)

